State of Matter

Der Smarthome-Standard Matter ist gekommen, um den Markt aufzurollen. Doch wie sieht es mit der Umsetzung aus und kann der Standard seinem Versprechen gerecht werden?

Nachdem der Standard, knapp drei Jahre in der Entwicklung war, wurde er schlussendlich im November 2022 offiziell auf einem Launch-Event in Amsterdam vorgestellt.

Bereits damals kündigten viele Hersteller ihre Unterstützung an. In der sich für den Matter-Standard zuständig zeichnenden Connectivity Standards Alliance (CSA), finden sich über 500 Firmen, die unter dem Dach der Organisation vereint sind.

Darunter sind klingende Namen, wie Amazon, Apple, Google, Nordic Semiconductor, NXP Semiconductors, Samsung, Silicon Labs und viele mehr. Doch wie sieht es aus mit der Unterstützung des Standards?

Android und iOS

Matter unterstützt sogenannte Multi-Admin-Funktionalität. Dies bedeutet, dass eine Matter-Installation von unterschiedlichsten Geräten gesteuert werden kann. Für diese Steuerung wurde in unterschiedlichste Betriebssysteme mittlerweile entsprechende Unterstützung eingebaut. Diese wird meist im Rahmen der jeweiligen Smarthome-Strategie der Hersteller ausgestaltet.

So ist die Matter-Unterstützung unter iOS in die Home-App integriert. Eingeführt wurde diese Unterstützung mit der Version 16.1 von iOS. Mit diesen Updates im Oktober 2022, wurden auch andere Systeme wie watchOS mit einer Matter-Unterstützung versehen.

Unter Android wurde die Unterstützung für Matter ab Version 8.1 eingeführt, sofern die Play-Dienste ab Version 22.48.14 installiert sind. Auch hier kann das Smarthome unter Nutzung des Matter-Standards über die Home-App genutzt werden.

Smarthome-Ökosysteme

Interessant ist auch die Unterstützung der jeweiligen Home-App von Google und Apple auf dem Konkurrenzsystem. So sind die Home-Apps von Apple und Google auch auf Android respektive iOS verfügbar und unterstützen dort ebenfalls den Matter-Standard.

Andere Ökosysteme für Smarthomes sind mittlerweile ebenfalls auf den Matter-Standard angepasst. So unterstützt SmartThings von Samsung seit einiger Zeit Matter unter iOS und Android. Allerdings ist diese Unterstützung nicht komplett. So werden unter anderem Bridges, welche im Matter-Standard vorgesehen sind, durch die App noch nicht unterstützt.

Bridges dienen zur Anbindung von nicht direkt kompatiblen Systemen, an ein Matter kompatibles System. Ein solche definiert sich im Standard dadurch, dass sie ein Matter-Knoten darstellt, welcher ein oder mehrere Nicht-Matter-Geräte darstellt.

Die Alexa-App unterstützt, analog zu den anderen Systemen, seit einiger Zeit den Matter-Standard. Dies ging einher mit der Aktualisierung vieler Alexa-Echo-Geräte, insbesondere in den neuen Generationen der Gerätereihe. Mit Home Assistant verfügen Open Source-Lösungen mittlerweile auch über Unterstützung für Matter.

Border-Router und Controller

Bei Matter wird für die Kommunikation der Geräte untereinander Wi-Fi, Ethernet oder Thread benutzt; für die Kommissionierung Bluetooth LE. Näheres dazu findet sich im entsprechenden Hintergrundartikel.

Ein komplexes Matter-Netzwerk

Thread versteht sich als selbstheilendes Mesh-Netzwerk. Es ist darauf ausgelegt, Geräte miteinander zu verbinden, welche eine geringe Datenrate benötigen und möglichst wenig Energie verbrauchen sollen. Das Protokoll besticht durch sein simples Design und ermöglicht niedrige Latenzen.

Basierend auf IPv6 wird somit bei Matter ein Netz gebildet, über welches die unterschiedlichen Geräte miteinander kommunizieren. Zur Anbindung eines Thread-Netzwerks an das Matter-Ökosystem werden Border-Router benötigt, welche die Verbindung zum hauseigenen LAN herstellt.

In vielen Haushalten müssen diese allerdings nicht extra angeschafft werden, da bestehende Geräte, wie einige Smart-Speaker von Amazon, per Update zu solchen Border-Routern aktualisiert werden konnten.

Hintergrund hierfür ist, dass Thread auf IEEE 802.15.4 aufsetzt, bei welchem es sich um einen Standard für kabellose Netzwerke mit geringen Datenraten handelt. In IEEE 802.15.4 ist die Bitübertragungsschicht (Physical Layer) und die Data-Link-Schicht definiert.

Neben Thread setzt unter anderem auch ZigBee, ebenfalls ein Mesh-Protokoll, auf IEEE 802.15.4 auf, was eine Aktualisierung solcher Geräte, hin zu Thread, perspektivisch möglich macht. Damit sind viele Funkchips welche ZigBee unterstützen in der Theorie für Thread geeignet.

Apple hat die Unterstützung für Matter mit der HomePod-Version 16.1 implementiert. Auch der Apple TV kann in bestimmten Generationen als Border-Router verwendet werden. Aktuell werden der Apple TV 4K in der zweiten und dritten Generation neben dem HomePod Mini und dem HomePod in der zweiten Generation unterstützt.

Bei Amazon wurde mittlerweile eine kleine Armada an Geräten mit einer Matter-Unterstützung ausgestattet. So unterstützt der Echo der vierten Generation die Thread-Funktechnik und kann als Border-Router verwendet werden. Daneben können die Geräte Echo, Echo Plus und die Echo Dot-Serie als Matter-Controller verwendet werden. Hier wird gewöhnlich ab der zweiten und dritten Generation der Geräte eine Unterstützung geliefert.

Die eero-Router, hergestellt von einer Tochterfirma von Amazon, können als Border-Router genutzt werden. Hier findet sich eine entsprechende Unterstützung in den Modellen eero 6, eero 6+, eero Pro, eero Pro 6E und eero Pro 6.

Google verfügt über eine Reihe von Geräten, welche mittlerweile Matter unterstützen und als Border-Router genutzt werden können. So werden die Smart-Speaker Google Home, Google Home Mini, Nest Mini, Nest Audio und die Displays Nest Hub (1. Generation), Nest Hub (2. Generation) und der Nest Hub Max unterstützt. Auch der Nest Wifi Pro (Wi-Fi 6E) Router verfügt über eine entsprechende Unterstützung.

Neben den Geräten von Big Tech, finden sich in vielen Haushalten, Router der Firma AVM, namentlich die FRITZ!Box. Die neuen Modelle 5690 XGS & 5690 Pro, welche noch in diesem Jahr erscheinen sollen, verfügen neben dem von AVM bevorzugten DECT ULE auch über Unterstützung für ZigBee. Basierend auf dieser Möglichkeit, soll eine spätere Matter-Unterstützung Einzug halten. Das FRITZ!Smart Gateway soll in Zukunft ebenfalls Unterstützung für Matter erhalten.

Daneben finden sich einige andere Hersteller, welche mittlerweile entsprechende Unterstützung bzw. Border-Router liefern, namentlich der Aeotec Smart Home Hub, einige Geräte der Nanoleaf-Produktpalette und der Samsung SmartThings Hub in Version 3.

Bei anderen Geräten, wie dem Dirigera-Hub von Ikea, fehlt eine angekündigte Unterstützung immer noch.

Hardware

Doch wie sieht es bei den Herstellern der eigentlichen Smarthome-Geräte aus? Erst durch sie wird das Smarthome steuer- und erfahrbar. Neben den Konzernen Apple, Amazon und Google, welche sich in vielen Fällen mit entsprechender Software-Unterstützung und dem Bau von Border-Routern und Controllern beschäftigen, existieren auch die Firmen, welche Sensoren und Aktoren liefern.

In diesem Feld sind unter anderem Aeotec, Eve Systems, Signify und einige andere Anbieter unterwegs. Dagegen haben Hersteller, wie Belkin, ihre Unterstützung für Matter mittlerweile zurückgezogen.

Ein Sensor von Fibaro

Firmen wie Fibaro, haben sich trotz einer großen Auswahl an Smarthome-Produkten bisher nicht zu Matter geäußert. Doch wie sieht es bei den Herstellern im Einzelnen aus?

Aeotec

Aeotec, hervorgegangen aus den Aeon Labs, ist mittlerweile eine Firma mit Hauptsitz in Hamburg. Bekannt geworden ist die Firma primär durch Smarthome-Geräte, welche den Z-Wave-Standard unterstützten.

Mit dem Aeotec Smart Home Hub liefert Aeotec einen zu Matter und dem Thread-Funkstandard kompatiblen Hub. Der ZigBee-Stick, mit dem Namen Zi-Stick, soll in Zukunft, per Update, auch das Thread-Protokoll unterstützen.

Ansonsten setzen die Aktoren und Sensoren von Aeotec nicht auf Matter, sondern auf das Z-Wave-Protokoll und die entsprechende Funktechnik auf.

Eltako

Im professionellen Bereich bietet die Firma Eltako mittlerweile Matter zertifizierte Geräte an. Hier handelt es sich unter anderem um Beschattungsaktoren, ein Stromstoß-Schaltrelais und Dimmaktoren.

Damit ist es möglich, bestehende Installationen über Matter einzubinden. Neben der Matter-Integration verfügen sie unter anderem über eine REST-API, sowie eine Apple Home-Integration.

Eve Systems

Eve Systems, früher als Elgato Systems bekannt, bietet Smarthome-Geräte für unterschiedlichste Bereiche an. Mittlerweile werden von der Firma auch erste Matter-Geräte angeboten.

Der Bewegungssensor Eve Motion

Darunter fallen die schaltbare Steckdose Eve Energy, die Kontaktsenoren Eve Door & Window und der Bewegungssensor Eve Motion. Teilweise agieren die Geräte als Matter-Controller sowie als Border-Router für das Thread-Protokoll.

Die Produkte Eve Shutter Switch und Eve Flare unterstützen bereits das Thread-Protokoll und sollen mit einem späteren Update, entsprechende Matter-Unterstützung erhalten. Das Gleiche soll auch für die Produkte Eve MotionBlinds, Eve Thermo, Eve Light Switch, Eve Weather und Eve Room gelten. Für diese Geräte war eine entsprechende Unterstützung bis Ende 2022 angekündigt, wurde allerdings bisher noch nicht ausgeliefert.

Govee

Govee ist seit 2017 im Smarthome-Bereich tätig und hat unterschiedlichste Produkte wie LED-Streifen und Sensoren im Angebot. Bekannt geworden sind sie auch durch eine kurzzeitige Auslistung bei Amazon, was wohl auf das Verpackungsdesign einiger Produkte zurückzuführen war. Diese besaßen eine auffällige Ähnlichkeit mit den Philips Hue-Produkten von Signify.

Mit dem Govee RGBIC LED Strip M1 hat Govee mittlerweile sein erstes Matter fähiges Produkt auf den Markt gebracht.

Leviton

Der nordamerikanische Hersteller Leviton, ist in Europa, aufgrund seines Zuschnitts auf den amerikanischen Markt, eher weniger bekannt. Dafür liefert er in seiner Heimat entsprechende Hardware mit Matter-Unterstützung.

Zu dieser gehört ein Smart Switch, eine schaltbare Steckdose und einige Dimmer. Konkret sind dies die Geräte Smart Wi-Fi 2nd Gen D26HD Dimmer, D215S Switch, D215P Mini Plug-In Switch und der D23LP Mini Plug-In Dimmer, welche über ein entsprechendes Firmware-Update aktualisiert werden können.

Andere Geräte von Leviton, sollen in Zukunft per Update in den Genuss einer Matter-Unterstützung kommen.

Nanoleaf

Nanoleaf wurde 2012 gegründet und finanzierte erste Produkte über Kickstarter. Mittlerweile liefern sie eine Reihe von ausgefallenen Beleuchtungslösungen.

Nanoleaf stellt ungewöhnliche Beleuchtungslösungen her

Neue Produkte, wie der Essentials Matter Lightstrip und die Essentials Matter Smart Bulb, sind von Werk aus mit einer Matter-Unterstützung versehen und können in entsprechende Ökosysteme eingebunden werden.

Bestehende Produkte der Essentials-Reihe können nicht per Update auf den Matter-Standard gehoben werden, da dies seitens der Hardware nicht unterstützt wird. Ob die Produktreihen Elements, Lines und Shapes eine entsprechende Aktualisierung auf Matter erhalten ist zurzeit noch unklar. Angebunden werden diese Systeme per WLAN. Daneben arbeiten diese Geräte bereits heute als Thread-Border-Router.

Signify

Das unter der Marke Philips vertriebene Lichtsystem Hue, ist bereits seit 2012 auf dem Markt. Entwickelt und vertrieben wird es von dem mittlerweile unabhängigen Unternehmen Signify, welches früher unter dem Namen Philips Lighting firmierte.

Das System, welches auf ZigBee basiert, ist so zumindest funktechnisch unter Umständen auf Thread aktualisierbar. Die Leuchtmittel sollen allerdings nach Aussage von George Yianni, seines Zeichens Head of Technology Philips Hue bei Signify nicht auf Thread aktualisiert werden.

Hier wird seitens Signify die Strategie gefahren, nur den Hue Hub mit einer Matter-Unterstützung zu versehen. In der FAQ wird dies wie folgt beschrieben:

Alle Philips Hue Lampen und intelligentes Zubehör wie der Hue Dimmschalter und Hue Smart Button funktionieren mit Matter, wenn sie über die Philips Hue Bridge verbunden sind. Die einzigen Ausnahmen sind die Philips Hue Play HDMI-Sync Box und der Tap Dial Switch.

Auch dieses Update lässt allerdings noch auf sich warten, bzw. findet sich in einer Beta-Version, welche für Entwickler freigegeben wurde.

Der Hintergrund für diese Herangehensweise ist, dass die Hue-Bridge nicht nur als einfache Verbindung zwischen dem WLAN und den angeschlossenen ZigBee-Geräten gesehen wird, sondern als Zentrale für Abläufe und Automatisierungen.

Solche Funktionalitäten sollen nicht direkt in die Leuchtmittel eingebaut werden. Es wird befürchtet, damit die Komplexität des Systems zu erhöhen. Auch die Entscheidung, die Geräte mittelfristig nicht auf Thread umzurüsten, wird entsprechend begründet. Hier wird argumentiert, dass das entsprechende Mesh-Netzwerk über ZigBee im Laufe der Jahre produktionsreif gemacht wurde. Bei Thread steht die Befürchtung im Raum, dass hier noch viele Kinderkrankheiten und Inkompatibilitäten zu beheben sind, bis ein vergleichbarer Stand, wie mit der aktuellen Implementierung erreicht werden kann.

Mittlerweile ebenfalls zu Signify gehörend ist das ehemalige Start-up Wiz, welches auch Beleuchtungslösungen anbietet. Diese werden per WLAN angebunden und arbeiten ohne Bridge.

Bei Wiz wird Matter bei Leuchtmitteln und Smart Plugs, welche ab dem zweiten Quartal 2021 produziert worden sind, unterstützt. Die entsprechenden Updates für die meisten Bestandsgeräte sind hierbei mittlerweile erschienen.

SwitchBot

Die 2016 gegründete Firma befasst sich mit der Entwicklung von Smarthome-Geräten, wie Schlössern, Kameras und Schaltern.

Mit dem SwitchBot Hub 2 brachte sie ihr erstes Matter fähiges Produkt auf den Markt. Über diesen können andere Geräte wie SwitchBot Curtain ebenfalls per Matter angebunden werden.

Weitere Produkte sollen folgen, sind aber im Moment noch in Entwicklung. Hier sind Erscheinungstermine für das dritte und vierte Quartal 2023 anvisiert.

TP-Link

Neben Netzwerkprodukten bietet der chinesische Hersteller TP-Link mittlerweile auch eine Palette von Smarthome-Produkten an. Diese firmieren unter den Marken bzw. Unternehmen Tapo und Kasa.

Anfang des Jahres wurde mit dem Tapo P125M, einer schaltbaren Steckdose, ein Matter fähiges Produkt aus dieser Produktreihe vorgestellt.

In Zukunft sollen Matter-Updates für weitere Steckdosen, Schalter, Leuchtmittel und Thermostate erscheinen.

Tridonic

Tridonic, eine zur Zumtobel Group gehörende Firma, ist vorwiegend im professionellen Bereich bekannt. Auch hier wird an Matter-Lösungen gearbeitet, bzw. solche werden angeboten.

Die Matter-Produkte von Tridonic

Hierbei werden ein Wireless Matter Treiber, mit 24 V Konstantspannung, erhältlich in 35 W, 60 W, 100 W, 150 W, sowie ein Wireless Matter to DALI Passivmodul und ein Wireless Matter to DALI SR Modul angeboten. Über die Wireless-Module können bestehende Systeme nachgerüstet und somit Beleuchtungen Matter fähig gemacht werden.

Angebunden sind die Module per Thread. Für diese Module wurden Updates angekündigt, welche unter anderem die Änderung der Farbtemperatur möglich machen sollen, sobald dies vom Matter-Standard unterstützt wird.

Xiaomi

Unter der Marke bzw. der Tochterfirma Aqara bietet Xiaomi mittlerweile ebenfalls Matter kompatible Geräte an.

So unterstützt der Hub M2, ab der Firmware Version 4.0.0 Matter in einer Betaversion. Dabei dient dieser dann auch als Bridge, für Nicht-Matter-Geräte, wie die angeschlossenen ZigBee-Geräte. Das Update dient der Einbindung des Hubs in Matter-Umgebungen, ändert allerdings nichts am verwendeten Funkstandard im Hub selbst. Auch der Hub M1S wurde mittlerweile mit einem entsprechenden Update versehen, welches die Matter-Unterstützung im Beta-Stadium nachrüstet.

Neben diesen Hubs existieren im Portfolio von Aqara einige andere Hubs, wie der Hub E1 oder die Camera Hub-Serie. Auch diese sollen perspektivisch Updates für Matter erhalten. Angekündigt waren diese Updates für den Lauf des Jahres 2023.

Allterco

Während die Firma Allterco den wenigsten ein Begriff ist, sieht es bei der Marke Shelly anders aus. Unter dieser werden günstige Smarthome-Komponenten wie schaltbare Steckdosen, Unterputzschalter, Sensoren und einige andere Produkte angeboten.

Der Shelly Plug S

Angesteuert werden die Geräte meist per WLAN oder Bluetooth. Für die Produkte der Plus- und Pro-Reihe wurde Unterstützung für Matter für das zweite Quartal 2023 angekündigt. Allerdings wurde die Veröffentlichung zu diesem Zeitpunkt wieder abgesagt und auf die Zukunft verschoben. Damit ist unklar, wann mit ersten Matter-Geräten unter der Marke Shelly zu rechnen ist.

Bosch

Die Firma Bosch mischt beim Smarthome mit dem System Bosch Smart Home mit. Anfang des Jahres wurde angekündigt, dass das System kompatibel mit dem Matter-Standard sein wird.

So wurde mitgeteilt, dass unter anderem der Smart Home Controller II Matter unterstützen wird. Aktuell wird allerdings nur beschrieben, dass die Geräte auf den Standard vorbereitet sind. Ein kostenloses Update soll später folgen.

Ikea

Der schwedische Möbelproduzent wollte mit dem Dirigera einen Hub mit Matter-Unterstützung auf den Markt bringen. Während der Hub seit Ende 2022 erworben werden kann, sieht es mit dem entsprechenden Update bisher weniger erfreulich aus.

Dieses sollte im ersten Halbjahr des Jahres 2023 erscheinen. Andere Smarthome-Geräte aus dem IKEA-Bestand unterstützen gegenwärtig kein Matter. Auch entsprechende Ankündigungen sind bisher nicht erfolgt.

Da die IKEA Produkte auf ZigBee aufsetzen, wäre, wenn die entsprechenden Funkcontroller dies zulassen, ein Update auf Thread im Rahmen der Matter-Unterstützung denkbar.

Nuki

Die Firma Nuki ist vorwiegend für ihre Türschlösser bekannt. Die Kommunikation der Schlösser läuft über das Bluetooth Low Energy-Protokoll, welche auch über die Nuki Bridge eingebunden werden können und damit indirekt per WLAN ansteuerbar sind.

Eines der Smart Locks von Nuki

Auch wenn die Firma bisher keine Matter-Produkte anbietet, wurde bereits an ersten Prototypen gearbeitet. Eine Aktualisierung bestehender Produkte auf den Matter Standard ist hierbei nicht geplant.

Schneider Electric

Der französische Konzern Schneider Electric hat seine Pläne für Matter mittlerweile verkündet. So sollen die neuste Generation der Wiser Gateways mit Matter kompatibel sein. Dieses dient als Bridge für die angeschlossenen ZigBee-Geräte. Auch die Wiser Home-App soll in Zukunft mit einer entsprechenden Unterstützung versehen werden.

Die ersten Produkte, welche Matter unterstützen sollten, sind das Wiser Gateway und der Wiser Smart Plug. Allerdings ist dies bisher aus den Spezifikationen der Produkte nicht ersichtlich.

Shortcut Labs

Shortcut Labs, eine schwedische Firma, entwickelt und vertreibt mit Flic einen smarten Bluetooth-Taster und dem Flic Hub eine zentrale Steuerungsmöglichkeit für Smarthome-Geräte.

Zur Matter-Unterstützung hat sich Shortcut Labs vor etlichen Monaten geäußert. Diese ist für das Jahr 2023 anvisiert und soll sich auf sämtliche Produkte der Hub-Serie erstrecken. Bisher sind allerdings noch keinerlei Updates für diese Produkte verfügbar.

Weitere Hersteller

Neben den besprochenen Hersteller existieren noch andere Hersteller, welche das eine oder andere Matter fähige Produkt in ihrem Portfolio haben oder solche angekündigt haben. Zu diesen gehören unter anderem Mediola, Netatmo, Sonnof und Ubisys.

Interessant ist auch die angekündigte Unterstützung von Smart-TVs der Hersteller LG und Samsung. Diese sollen in Zukunft über Matter-Unterstützung verfügen und sich so zur Steuerung von Matter-Geräten eignen.

Fazit

Nach einigen Startschwierigkeiten, finden sich nun die ersten Hersteller, welche fertige Produkte für den neuen Standard ausliefern.

Allerdings scheint es auch, dass viele Hersteller die Komplexität von Matter unterschätzt haben und hier auf einen späteren Einstieg in den Markt hinarbeiten. Hier hat Matter bis zu einer entsprechenden Durchdringung des Marktes noch einiges vor sich.

Gemeinsam haben die Ankündigungen, dass sich die Matter-Unterstützung meist verspätet und gar ganz abgekündigt werden.

Ob hier die Komplexität, des doch recht umfangreichen Standards, unterschätzt wurde, darüber kann nur spekuliert werden. Daneben bedeutet eine Unterstützung für Matter nicht automatisch volle Kompatibilität. So wird auf den Echo-Geräten, in den ersten Iterationen, nur eine Handvoll Produktkategorien des Standards unterstützt. Namentlich sind dies Lampen, Schalter und Steckdosen.

Dies führt z. B. zu dem Problem, dass Matter-Bridges im Amazon-Kontext aktuell nicht genutzt werden können. Das Gleiche gilt für SmartThings von Samsung.

So fühlt sich der Matter-Start in vielen Fällen holprig an und kommt nur Stück für Stück voran. Es bleibt abzuwarten, ob hier in Zukunft, nachdem der Standard etabliert ist, Besserung kommt.

Die Einfachheit, welche dem Endbenutzer versprochen wurde, erstreckt sich leider nicht auf die Implementation seitens der Hersteller. Dies zeigt, wie herausfordernd es ist, einen neuen Standard in einem bereits etablierten Markt zu implementieren. Trotz der Versprechen von einfacher Handhabung und nahtloser Kompatibilität ist die Realität oft eine andere. Die Implementierung von Matter erfordert eine genaue Planung und sorgfältige Ausführung. Viele Hersteller scheinen sich noch in der Anfangsphase dieses Prozesses zu befinden.

Allerdings sollte berücksichtigt werden, dass diese anfänglichen Herausforderungen nicht unbedingt auf langfristige Probleme hindeuten. Sie könnten viel mehr als Wachstumsschmerzen betrachtet werden, die oft mit der Einführung neuer Technologien einhergehen.

Ein bedeutsamer Aspekt, der im Kontext von Smarthome-Installationen hervorgehoben werden sollte, ist die Langlebigkeit einer solchen. Sie ist nicht auf einen kurzen Zeitraum von wenigen Jahren ausgelegt, sondern soll teilweise Jahrzehnte genutzt werden. Hier muss der Matter-Standard sich ein entsprechendes Vertrauen erarbeiten und die Hersteller eine langfristige Unterstützung bereitstellen.

Dieser Artikel erschien ursprünglich auf Golem.de und ist hier in einer alternativen Variante zu finden.

Matter im Überblick

Im Laufe der letzten Jahre und Jahrzehnte sind einige Smart Home-Standards auf den Markt gekommen. Mit Matter ist nun ein neuer Standard angetreten, welcher den Smart Home-Markt aufrollen möchte.

Doch abseits der für den Endnutzer gedachten Versprechen, welche Vorteile er bringen soll, wird erstaunlich wenig über die technischen Hintergründe gesprochen.

Allerdings helfen diese Hintergründe Matter und seine Möglichkeiten zu verstehen. In diesem Artikel sollen die Hintergründe von Matter beleuchtet und gezeigt werden, wie Matter abseits der Marketingversprechen funktioniert.

Bestehende Standards

Matter ist beileibe nicht der erste Standard, welcher sich mit dem Thema Smart Home beschäftigt. Vor ihm gab und gibt es Standards wie Z-Wave, EnOcean und Zigbee. Letzterer spielt bei Matter organisatorisch eine besondere Rolle.

Je nach Standard werden unterschiedlichste Technologien und Funksysteme genutzt, wie das vermaschte Netzwerk, welches Z-Wave-Geräte untereinander aufbauen.

Das Problem an diesen Systemen ist, dass sie meist zueinander inkompatibel sind. Über Lösungen wie Home Assistant oder Homee können diese unterschiedlichen Systeme zur Zusammenarbeit gebracht werden.

Allerdings wird auch hier in vielen Fällen nur eine begrenzte Anzahl an Hardware unterstützt. Eine allumfassende Lösung stellt dies meist nicht dar.

Auch ins heimische Funknetz eingebundene Geräte werden gerne für die Smart Home-Anwendungen genutzt, welche auch durch ihren günstigen Preis bestechen können.

Aus Sicht von Entwickler sind unterschiedlichste Standards ein Problem. Je nach Firmengröße kann sich nur für einen Standard entschieden werden, da zusätzlich zu unterstützende Standards mehr Entwicklungsaufwand und damit am Ende mehr Kosten bedeuten.

Daneben sind die unterschiedlichen Standards zwar mehr oder weniger gleichwertig, allerdings gibt es eine gewisse Fragmentierung bei den Geräteklassen, so sind Leuchtmittel vorwiegend mit dem Zigbee-Standard verheiratet oder werden über teils obskure Wi-Fi-Lösungen angebunden.

Zwar existieren auch Beleuchtungslösungen für Z-Wave, allerdings sind diese in ihrer Auswahl beschränkt und der Preis ist in vielen Fällen höher als bei den Zigbee-Varianten.

Es gibt es Hersteller, welche mehrere Systeme unterstützen und die gleichen Produkte wie schaltbare Steckdosen in unterschiedlichen Varianten, je nach Smart Home-System, anbieten.

Für den Kunden bedeutet diese Auswahl und die damit verbundenen Probleme wie die Berücksichtigung der Kompatibilität, dass er meist zögerlich zu Smart Home-Produkten greift. Aus Sicht der Hersteller und der Kunden ist dies eine suboptimale Situation: voneinander abgeschirmte Ökosysteme und Geräte, die nur unter Umständen miteinander genutzt werden können.

Smart Home-Markt

Für das Jahr 2022 wird von einem Umsatz im Smart Home-Markt von über einhundert Milliarden Euro ausgegangen.

Allerdings bedingt durch die Fragmentierung des Marktes, entspricht dieser Umsatz nicht dem, der vor einigen Jahren erwartet wurde. So wurde unter anderem von einer höheren Durchdringung des Marktes ausgegangen.

Aktuell nutzen knapp 15 % aller Haushalte, weltweit gesehen, Smart Home-Technik in ihrem Haus oder ihrer Wohnung. Bedingt durch die Vorteile, welche Matter bieten soll und die damit einhergehende Vereinheitlichung, soll dem Smart Home-Markt neues Leben eingehaucht werden.

Das Matter-Versprechen

Matter will die bestehenden Probleme anderer Standards lösen. Der Standard sieht sich als Smart Home-Interoperabilitätsprotokoll und definiert sich als Anwendungsschicht, welche existierende Protokolle wie Thread und Wi-Fi nutzt, um seine Aufgabe, eine Smart Home-Umgebung darzustellen und zu verwalten, zu erfüllen.

Im Grundsatz geht es darum, dass der neue Standard unabhängig von den einzelnen Herstellern sein soll. Auch soll es jedem Hersteller von Hardware möglich sein, den neuen Standard zu implementieren.

Dem Endnutzer wird die Kompatibilität, aller Matter-Geräte untereinander, versprochen. Daneben soll in Zukunft auf proprietäre Bridges und Hubs, welche zur Anbindung bestimmter Systeme genutzt werden, verzichtet werden können.

Eine weitere wichtige Eigenschaft von Matter ist, dass die Steuerung zwar in der Theorie an Cloud-Systeme angebunden werden kann, aber immer lokal funktionieren muss.

Aus Sicht des Datenschutzes und der Betriebssicherheit ist dies eine erfreuliche Entwicklung, da Steuersignale nun nicht mehr die halbe Welt umrunden müssen, bevor sie wieder im eigenen Zuhause ankommen. Auch die Zuverlässigkeit stärkt dies in der Theorie, da auch beim Wegfall der Internetverbindung das eigene Smart Home noch funktioniert.

Für die Einrichtung von Matter-Geräten werden nicht mehr unbedingt die Third-Party-Apps der jeweiligen Hersteller benötigt, sondern diese können zentral über Apps z. B. der Home-App unter iOS hinzugefügt werden.

Connectivity Standards Alliance

Organisatorisch wird der Matter-Standard von der Connectivity Standards Alliance (CSA) betreut. Diese ging aus der Zigbee Alliance, welche 2002 gegründet wurde, hervor, welche sich für den gleichnamigen Zigbee-Standard verantwortlich zeichnet.

Mittlerweile sind über 500 Firmen unter dem Dach der Connectivity Standards Alliance vereint. Dazu gehören Unternehmen wie Amazon, Apple, Comcast, Google, IKEA, Infineon, LG, Nordic Semiconductor und Samsung.

Von der Idee zum Standard

Erste Lebenszeichen des Matter-Standards gab es im Dezember 2019. Damals kündigten unter anderem Amazon, Apple und Samsung sowie die Zigbee Aliance an, dass eine Zusammenarbeit für das Projekt Connected Home over IP beschlossen wurde.

Knapp anderthalb Jahre nach der ersten Ankündigung wurde aus Connected Home over IP schließlich Matter. Im gleichen Zuge wurde durch eine Umbenennung aus der Zigbee Alliance die Connectivity Standards Alliance.

Nach etwa drei Jahren Zeit der Planung und Entwicklung erschien im Oktober 2022 mit der Version 1.0 die erste Iteration des Standards. Hier wurden neben der eigentlichen Standardbeschreibung unterschiedliche Produktkategorien wie Beleuchtungslösungen, Sicherheitssensorik, Thermostate, Türschlösser und einige andere spezifiziert.

Während der Entwicklung gab es bedingt durch Faktoren wie die Coronapandemie und Verzögerungen bei den Gerätetests einige Verschiebungen, welche dann schlussendlich zum Veröffentlichungstermin im Oktober 2022 führten. Im November 2022 wurde Matter offiziell auf einem Launch-Event in Amsterdam vorgestellt.

In der nächsten Iteration des Standards, der Version 2.0, welche im März bzw. April 2024 erscheinen soll, sollen unter anderem die unterstützten Geräte um Klassen wie Staubsauger-Roboter, Rauchmelder, Kameras und einige andere erweitert werden.

Architektur

Aus architektonischer Sicht betrachtet ist Matter ein Applikationsprotokoll, welches auf bestehenden Technologien aufsetzt. Grundlage für das Matter-Protokoll bildet IPv6.

Matter setzt als Applikationsprotokoll auf vorhandenen Technologien auf

Der Matter-Protokollstack selbst besteht aus unterschiedlichsten Schichten, welche jeweils bestimmte fachliche Anforderungen erfüllen.

Die Schichten des Matter-Protokollstack

Die Anwendungsschicht (Application Layer) innerhalb des Matter-Protokollstacks implementiert die dem Gerät eigene Businesslogik. Im Falle einer schaltbaren Steckdose wäre dies die Logik, um das Gerät ein- und auszuschalten. Aktionen in der Anwendungsschicht führen zur Änderung im Datenmodell (Data Model).

Im Datenmodell werden die Daten für das entsprechende Gerät gehalten, z. B. ob das Gerät aktuell angeschaltet ist oder bei einem Leuchtmittel, die aktuell ausgewählte Leuchtfarbe.

Für die Interaktion von Außen werden im Interaction Model bestimmte Interaktionen definiert, welche von Außen geschrieben oder gelesen werden können. Eine solche Interaktion löst dann eine Logik in der Anwendungsschicht des Gerätes aus, um die entsprechenden Aktionen auszulösen.

Über das Interaction Modell kann eine Aktion definiert werden und über die Action Framing-Schicht wird sie schließlich in ein binäres Format serialisiert und dieses an die Security-Schicht übergeben.

In dieser wird die Nachricht verschlüsselt und ein Message Authentication Code angehangen. Damit soll sichergestellt werden, dass die Daten sicher und verschlüsselt zwischen den Instanzen bzw. Geräten übertragen werden.

Damit sind die Daten für die Nachricht serialisiert, verschlüsselt und kryptografisch signiert und werden an die Message Framing-Schicht übergeben, in welcher die endgültige Payload, welche schlussendlich über das Netzwerk verschickt wird, erzeugt wird. In Rahmen dieses Prozesses werden Headerfelder ergänzt, welche unter anderem Routing-Informationen enthalten können.

Anschließend wird das Ganze an die Transportschicht übergeben und findet so seinen Weg durch das Netzwerk, bis es beim definierten Empfänger ankommt. Dort angekommen wird der Matter-Protokollstack in umgekehrter Reihenfolge durchlaufen, bis schlussendlich wieder die eigentliche Nachricht in der Anwendungsschicht verarbeitet werden kann.

Fabric, Nodes und Controller

Im Matter-Standard werden einige Begriffe definiert, deren Wissen um die Bedeutung ein Verständnis des Standards erleichtert.

Ein zentraler Begriff im Matter-Standard ist die Fabric. Bei einer Fabric handelt es sich um einen logischen Verbund von Knoten (Nodes), welche eine gemeinsame Vertrauensbasis (Common Root of Trust) und einen gemeinsamen verteilten Konfigurationsstatus besitzen.

Ein Knoten (Node) ist im Matter-Standard definiert als eine Entität, welche den Matter Protokollstack unterstützt und nach der Kommissionierung über eine Operational Node ID und Node Operational Credentials verfügt.

Eine schaltbare Steckdose

Dabei ist ein Node nicht unbedingt gleichzusetzen mit einem Gerät. Ein Gerät, wie eine schaltbare Steckdose kann in der Theorie mehrere Knoten beinhalten, welche wiederum zu mehreren Fabrics gehören können.

Daneben gibt es im Matter-Standard den Begriff des Controllers. Dieser ist definiert als ein Matter-Knoten, welcher die Berechtigung hat einen oder mehrere Knoten zu kontrollieren. Dies kann z. B. das Smart Home-System sein oder ein iPhone mit der entsprechenden Home-App. Matter unterstützt per Design unterschiedlichste Controller in einem Matter-Netzwerk. Dieses Feature wird als Multi-Admin bezeichnet.

Kerntechnologien

Für Matter-Netzwerke, sind einige Kerntechnologien definiert, welche im Rahmen des Standards genutzt werden.

Für die Kommunikation der Geräte untereinander wird Wi-Fi, Ethernet oder Thread benutzt, für die Kommissionierung Bluetooth LE.

Bluetooth LE

Bluetooth LE wird im Matter-Standard genutzt, allerdings nicht für die Kommunikation der Geräte untereinander. Stattdessen wird Bluetooth LE für Kommissionierung (commission, im Matter-Standard) der Geräte genutzt.

Nach der Definition des Matter-Standards wird bei der Kommissionierung ein Node in die Fabric eingebracht, also das Gerät dem Matter-Netzwerk hinzugefügt.

Im Rahmen dessen werden die Zugangsdaten des Netzwerkes und andere für die Kommissionierung benötigten Informationen auf das Gerät übertragen.

Im Anwendungsfall würde dies so aussehen, dass der Nutzer einen QR-Code scannt, welcher die Informationen über das Gerät enthält und anschließend die Kommissionierung mittels Bluetooth LE durchgeführt wird.

Diese Informationen müssen nicht unbedingt als QR-Code geliefert werden. In der Theorie kann auch NFC als Technologie benutzt werden oder die enthaltenen Informationen einfach als kodierte Zeichenkette auf dem Gerät aufgedruckt sein oder dem Handbuch beiliegen.

Dies ermöglicht eine einfache Konfiguration und Einbindung der Geräte aus Sicht des Endbenutzers. Ist die Kommissionierung abgeschlossen und das Gerät damit in das Matter-Netzwerk eingebunden, nutzt das Gerät Bluetooth LE nicht mehr.

Anbindung der Smart Home-Geräte

In den meisten praxisnahen Fällen wird die Anbindung von Geräten meist auf die Anbindung per Thread und Wi-Fi hinauslaufen. Bei Wi-Fi im Heimbereich sind alle Geräte mehrheitlich mit einem Access Point verbunden. Bei Thread hingegen handelt es sich um ein vermaschtes Netz, welche über Border-Router mit dem Rest des Netzwerkes verbunden ist.

Thread

In einem Smart Home sind eine Reihe von Aktoren, wie schaltbare Steckdosen und Ähnliches verbaut. Daneben gibt es dann noch Sensorik, z. B. in Form von Temperatur- und Bewegungssensoren.

Sensoren, wie Temperatur oder Bewegungssensoren, laufen mehrheitlich mit Batteriestrom und eignen sich damit nicht für energieintensive Techniken wie Wi-Fi, um ihre Daten von A nach B zu transportieren.

Ein batteriebetriebener Sensor

Hier kommt das Protokoll Thread ins Spiel. Dieses ist darauf ausgelegt, Geräte miteinander zu verbinden, welche eine geringe Datenrate benötigen und möglichst wenig Energie verbrauchen sollen. Das Protokoll besticht durch sein simples Design und ermöglicht geringe Latenzen.

Das Netzwerkprotokoll Thread versteht sich als selbstheilendes Mesh-Netzwerk. Ein Designziel war es unter anderem, dass es keinen Single Point of Failure in einem solchen Netzwerk geben soll, die Übertragung zuverlässig und die Reichweite durch das Routing innerhalb des Thread-Netzwerkes gegeben ist.

Im Rahmen von Matter sollen hunderte bis tausende Produkte über Thread in einem Netzwerk unterstützt werden.

Entwickelt wird das Protokoll seit 2014 von der Thread Group welcher unter anderem ARM Limited, Nest Labs, Samsung und Qualcomm angehören. Die Entwicklung ist seit dem nicht stehen geblieben und so wurden mit Thread 1.3 Funktionalitäten wie vollumfängliches IP-Routing und Service-Discovery hinzugefügt. Diese Funktionalitäten werden für die Nutzung von Thread im Zusammenhang mit Matter benötigt.

Thread setzt auf IEEE 802.15.4 auf, bei welchem es sich um ein Standard für kabellose Netzwerke mit geringen Datenraten handelt. In IEEE 802.15.4 ist die Bitübertragungsschicht (Physical Layer) und die Data-Link-Schicht definiert.

Neben Thread setzt unter anderem auch Zigbee auf IEEE 802.15.4 auf, was ein Update solcher Geräte, hin zu Thread, perspektivisch möglich macht.

Das OSI-Modell

Darüberliegende Schichten, welche z. B. das Routing übernehmen können, müssen dann von anderen Protokollen übernommen werden. An dieser Stelle setzt Thread ein.

Per Thread angebundene Geräte können per IPv6 adressiert werden. Wichtig ist es festzuhalten, dass es sich bei Thread nicht um Matter handelt, sondern Thread ein eigenständiges Funkprotokoll ist, welches wie Wi-Fi der Anwendungsschicht agnostisch gegenübersteht.

Rollenspiele

Bei Thread kann jedes Gerät unterschiedliche Rollen annehmen. So gibt es in einem Thread-Netzwerk, einen Leader, einen oder mehrere Router und die Rolle des Endgerätes.

Jedem Gerät wird mindestens die Rolle des Endgeräts zugewiesen. Das sind solche Geräte, welche einen Befehl in Form eines Datenpaketes erhalten, um diesen auszuführen.

Ein Leader ist eine Rolle, welche nur einmal vergeben wird. Dieser koordiniert das Thread-Netzwerk. Fällt ein Leader aus, so wird automatisch ein neuer Leader bestimmt. Dazu ist es notwendig, dass jederzeit andere Geräte für den bestehenden Leader einspringen können. Die Zustandsinformationen müssen also im Netzwerk aktuell gehalten werden.

Router, leiten Datenpakete im Thread-Netzwerk weiter. Diese Rolle wird dynamisch von den jeweiligen Geräten aktiviert bzw. wieder deaktiviert, wenn z. B. zu viele Router in der Umgebung unterwegs sind. Daneben bieten die Router Funktionalität, wie Security Services, für andere Geräte, die dem Netzwerk beitreten wollen.

Normalerweise nehmen Thread-Geräte nur die Rolle als Endgerät wahr. Wird mehr Reichweite im Netzwerk benötigt, werden einige dieser Geräte automatisch Router in diesem. Das passiert z. B. dann, wenn ein Endgerät keinen Router findet, aber ein Endgerät in der Theorie eine solche Rolle einnehmen kann.

Auf der anderen Seite funktioniert dies auch, wenn sich zu viele Router in einem Bereich befinden und damit zu viel Redundanz vorhanden ist. In diesem Fall stufen sich Geräte in wieder zurück und geben die Router-Rolle auf. Dies ist z. B. dann der Fall, wenn ein Gerät nur noch mit anderen Geräten verbunden ist, welche ebenfalls die Router-Rolle wahrnehmen.

Damit ist das Routerkonzept, im Gegensatz zu Technologien wie Bluetooth Mesh oder Zigbee dynamisch.

FTDs und MTDs

Thread kennt unterschiedliche Typen von Geräten. Einerseits gibt es sogenannte Full Thread Devices (FTD) und sogenannte Minimal Thread Devices (MTD).

Bei den FTDs handelt es sich um autonome Geräte im Thread-Netzwerk, welche Rollen, jenseits der Endgeräte-Rolle, wahrnehmen. Im Normalfall haben diese Geräte entsprechende Hardwareressourcen, wie genügend Speicher et cetera. Im Gegensatz zu den MTDs sind FTDs immer mit dem Thread-Netzwerk verbunden. Infolgedessen sind FTDs meist solche Geräte, welche direkt am Stromnetz angeschlossen sind.

Ein einfaches Thread-Netzwerk

MTDs hingegen sind für solche Geräte gedacht, welche größtenteils über eine Batterie betrieben werden. In diese Kategorien fallen Geräte wie Sensoren und Ähnliche. Diese müssen mit ihren Ressourcen entsprechend haushalten. Sie treten deswegen nur sporadisch mit dem Thread-Netzwerk in Kontakt und befinden sich den Großteil ihrer Betriebszeit im Schlafmodus.

MTDs senden alle ihre Nachrichten zu einem sogenannten Parent-Device und nehmen nur die Rolle als Endgerät im Thread-Netzwerk wahr.

Border-Router

Da im Rahmen von Matter Informationen aus dem Thread-Netzwerk heraus in den Rest des Netzwerkes gelangen müssen, werden hier wieder Router, sogenannte Border-Router benötigt. Diese routen die Informationen aus und in das Thread-Netzwerk.

Im Gegensatz zu anderen Systemen unterstützt Thread mehrere Border-Router, um auch hier wieder einen Single Point of Failure zu vermeiden. Die Funktionalität solcher Border-Router wird und kann von unterschiedlichsten Geräten wahrgenommen werden. Beispiele für solche Geräte sind z. B. Alexa-Geräte oder der HomePod mini von Apple.

Während bei Bridges eine Übersetzung der jeweiligen Daten vorgenommen wird, damit sie vom anderen System verstanden werden, werden bei den Border-Routern nur die entsprechenden Daten vom Thread-Netzwerk in das andere Netzwerk geroutet. Eine Übersetzung derselben findet nicht statt.

Wi-Fi

Neben Thread können Geräte im Matter-Standard auch über Wi-Fi eingebunden werden. Als Übertragungstechnik bietet sich Wi-Fi für Smart Home-Geräte an, welche eine höhere Bandbreite benötigen und meist auch über ein entsprechendes Energiebudget verfügen und zumeist direkt an das Stromnetz angeschlossen sind.

In diese Kategorie fallen unter anderem Videokameras und Türklingeln mit Videoverbindung. Allerdings ist Wi-Fi bzw. ein einzelner Access Point nicht unbedingt dafür gedacht, eine große Menge an Geräten gleichzeitig zu bedienen.

Mit Wi-Fi 6 sind Verbesserungen eingeflossen, um mehr Geräten in einem Netzwerk entsprechende Daten simultan senden zu können, sodass die Nutzung für Smart Home-Geräte auch hier in Zukunft sinnvoller ist.

Distributed Compliance Ledger

Ein interessantes Detail an Matter ist der Distributed Compliance Ledger. In dieser verteilten Datenbank bzw. Blockchain befinden sich kryptografisch abgesicherte Daten über die Geräteherkunft, den Status der Zertifizierung sowie wichtige Einrichtungs- und Betriebsparameter.

Eingesehen werden kann die Datenbank unter anderem über eine entsprechende Weboberfläche. Die verwendete Software dafür kann auf GitHub ebenfalls eingesehen werden.

Gelesen werden kann die Datenbank von jedermann während Schreibzugriffe nur Herstellern im Rahmen ihrer Produkte gestattet sind.

In dieser Datenbank, können Hersteller von Produkten Informationen über diese hinterlegen, damit sie von jedermann gelesen werden können. Auch die Ergebnisse von Compliance Tests werden in diese Datenbank geschrieben. Dasselbe gilt für die Compliance Confirmation der CSA.

Für den Nutzer wird der Distributed Compliance Ledger interessant, um zu erfahren, ob ein Gerät als mit dem Standard konform zertifiziert wurde oder um Modellinformationen wie Firmware- und Hardware-Versionen auszulesen. Auch Zertifikate können über die Datenbank bezogen werden, um lokale Zertifikate zu überprüfen.

Die Netzwerktopologie des Distributed Compliance Ledger

Im Kontext des Ledgers existieren unterschiedliche Knoten. Einer dieser Knoten sind Validator-Knoten welche eine komplette Kopie der Datenbank vorhalten. Nicht jeder Knoten kann ein Validator-Knoten sein, er benötigt hierfür eine Erlaubnis. Auch die Anzahl der Validator-Knoten sollte beschränkt sein.

Ein weiterer Knoten ist der Observer-Knoten. Auch dieser enthält eine komplette Kopie der Datenbank und jeder darf einen solchen Observer-Knoten aufsetzen. Daneben existieren noch andere Knoten wie Sentry-Knoten, welche vor Validator-Knoten stehen können und ein Weg des DDoS-Schutzes sind.

Der Client kann sich nun mit einem dieser Knoten verbinden und die benötigten Informationen erfragen. Die Responses sind kryptografisch abgesichert, sodass es keine Rolle spielt, ob sie von einem Observer– oder einem Validator-Knoten kommen.

Technisch setzt das System auf Tendermint bzw. dem Cosmos SDK auf, welches ein Framework für Blockchains zur Verfügung stellt.

Unterstützung

Matter an sich ist noch ein relativ junger Standard und im Moment ist es noch schwierig kompatible Geräte zu finden, auch wenn teilweise schon Updates und Geräte ausgeliefert worden sind. Dies betrifft z. B. einige Geräte von Eve Systems oder Produkte von Nanoleaf mit Matter-Unterstützung.

Interessant ist die Unterstützung auch vonseiten der Betriebssystemanbieter für mobile Systeme, wie iOS und Android. Mit iOS 16.1 lieferte Apple die Unterstützung für Matter aus. Bei Android lieferte Android 13 die ersten Integrationen für Matter.

Auch Smart Speaker wie die Alexa-Serie von Amazon unterstützen mittlerweile Matter, so wurden bereits Updates für einige Modelle ausgerollt, weitere Modelle sollen Anfang 2023 folgen. Einige Geräte fungieren dann auch als Thread-Border-Router und ermöglichen so die Integration von Smart Home-Geräten. Das Gleiche gilt für HomePod minis und den Apple TV 4K, welche ebenfalls Thread unterstützten.

Auch auf Produktseite fangen immer mehr Hersteller an Support für Matter in ihre Produkte einzubauen, so können Entwickler z. B. mit den Philips Hue-Hubs und Geräten in Verbindung mit Matter erste Tests durchführen.

Lizenz

Wer sich Matter anschauen möchte, kann sich die Spezifikation herunterladen, nachdem einige Daten bei CSA hinterlegt worden sind. Ein frei verfügbarer Download existiert nicht.

Ähnlich sieht es auch beim Thread-Standard aus. Hier werden auch entsprechende Hinweise in der E-Mail gegeben:

Please also note, as per the Thread 1.1 Specification EULA, you are prohibited from sharing the document.

Grundsätzlich handelt es sich bei Matter um einen proprietären Standard, der genutzt werden kann, nachdem eine Zertifizierung durchgeführt und die Mitgliedsgebühren für die Connectivity Standards Alliance gezahlt wurden. Offizieller Quellcode rund um Matter ist auf GitHub zu finden und unter der Apache-Lizenz lizenziert.

Problematisch wird das Lizenzierungsmodell des Matter-Standards für GPL-Software, bedingt durch die jährlich zu leistenden Zahlungen an die Connectivity Standards Alliance, welche mit der GPL nicht vereinbar sind.

Migration auf Matter

Interessant wird es auch, wenn ein bestehendes Smart Home auf Matter umgerüstet werden soll. In einem solchen Fall sind bereits Systeme wie Zigbee oder Z-Wave installiert und die Frage stellt sich, wie diese Systeme umgestellt werden können.

Der einfachste Weg wäre es natürlich alle bestehenden Altgeräte auszubauen und anschließend neue kompatible Matter-Geräte einzubauen. Dies wird, ist den meisten Fällen aus Kostengründen und mangels fehlender Praktikabilität kein Weg sein, der gegangen werden kann.

Im Matter-Standard selbst sind für diesen Fall Bridges vorgesehen, mit welchen diese „Altsysteme“ angebunden werden können. Ein Bridge definiert sich im Matter-Standard dadurch, dass sie ein Matter-Knoten darstellen, welcher eines oder mehrere Nicht-Matter-Geräte darstellt.

Ein komplexes Matter-Netzwerk

Über solche Bridges können schlussendlich bestehende Netzwerke eingebunden werden. Daneben lassen sich einige Produkte, welche z. B. Hardware nach dem 802.15.4-Standard verbaut haben oder aber bereits Thread unterstützen per Softwareupdate so upgraden, dass sie mit dem Matter-Netzwerk kompatibel werden.

Problematisch an solchen Bridge-Lösungen ist, dass die Geräte nicht direkt integriert sind und somit unter Umständen parallele Mesh-Systeme im Smart Home existieren. Aber über solche Bridge-Lösungen ist möglich, Stück für Stück in die neue Matter-Welt zu migrieren und so den Migrations-Big-Bang zu vermeiden.

Ausblick und Fazit

Matter hat sich als neuer Standard aufgestellt, um den Smart Home-Markt aufzurollen. Dass mit neuen Standards die alten Standards nicht unbedingt obsolet werden, hatte schon XKCD in einem seiner bekannteren Comics gezeigt.

Doch wie könnte die Zukunft von Matter aussehen? Da sich praktisch jeder größere Smart Home-Anbieter und andere Firmen wie Apple, Amazon, Google und Samsung an Matter beteiligen, könnte Matter das Potenzial haben, den Markt aufzurollen.

Schlussendlich stellt sich hier die Frage nach den Produkten, die mit Matter-Unterstützung auf den Markt gebracht werden und ob diese die Kundenwünsche erfüllen können.

Auch muss der Standard, der in der Theorie übergreifend unterstützt wird und dessen Geräte unabhängig vom Hersteller genutzt werden können, dies noch in der Praxis beweisen. Im schlimmsten Fall ist der Kunde hier wieder der Leidtragende, weil er kleine und größere Inkompatibilitäten ertragen muss.

Im besten Fall führt der neue Standard zu einer Migration alter Lösungen in Richtung Matter. Der Zigbee-Standard ist praktisch ein Legacy-Standard geworden und Z-Wave wird im schlimmsten Fall einen langsamen Tod sterben, da viele Nutzer zu Matter abwandern werden und Z-Wave es schwer haben wird, gegen diesen Standard zu bestehen.

Auch wenn Z-Wave aufgrund der genutzten Funkfrequenzen kleinere technische Vorteile hat, sind dies wahrscheinlich keine Faktoren, welche sich auf Kundenseite auswirken werden. Auch wenn dies in der Z-Wave Alliance anders gesehen wird:

Matter is bringing a lot of attention to the smart home. This makes it easy to overlook Z-Wave as the most established, trusted, and secure smart home protocol, that also happens to have the largest certified interoperable ecosystem in the market. We firmly expect that Z-Wave will play a key role in connecting devices and delivering the experience users really want.

Im Rahmen des Artikels wurde einige Hintergründe von Matter erläutert, trotzdem wurde Matter nur angerissen, da der Standard auf über achthundert Seiten, viele Details definiert und unterschiedlichste Verfahren im Detail erläutert.

Wenn Matter seine Versprechen halten kann und die Nutzung für den Kunden einfacher ist, könnte es ein Standard sein, der ein Großteil der Nutzer und Hersteller in Zukunft hinter sich vereinen könnte.

Dieser Artikel erschien ursprünglich auf Golem.de und ist hier in einer alternativen Variante zu finden.

Der universelle Cyberdelfin

Funktechniken wie NFC, RFID und Frequenzen wie die Nutzung des 433 MHz-Bandes bleiben den meisten Interessierten verschlossen. Mit dem Flipper Zero, welcher nun auch in Europa ausgeliefert wird, soll sich dies ändern.

Vor knapp zwei Jahren wurde im Rahmen einer Kickstarter-Kampagne im Juli 2020 der Flipper Zero angekündigt, auch Golem.de berichtete darüber.

Beim Flipper Zero handelt es sich um einen Hacker-Tamagotchi bzw. eine Art Funk-Multitool für Hacker. Die grundsätzliche Idee war es, die benötigten Werkzeuge für das Pentesting bestimmter Technologien, welche vorwiegend in der physischen Welt Verwendung finden, in einem Gehäuse zu vereinen. Dadurch ist der Anwender wesentlich mobiler und kann entsprechende Tests auch unauffällig durchführen.

Der Flipper Zero in Aktion

Im Grunde handelt es sich um ein Bündel unterschiedlichster Funktionalitäten, mit denen der Flipper Zero unter anderem als Universalfernbedienung, NFC- und RFID-Kopierstation (soweit technisch möglich), oder als Bastelwerkzeug für Hardwareinteressierte genutzt werden kann.

Nachdem die Kickstarter-Backer in Amerika und Australien bereits beliefert wurden, steht jetzt Europa auf der Liste.

Vom Hackspace zur Idee

Die Idee des Flipper Zero kam im Umfeld des Neuron Hackspace auf. Der Neuron Hackspace versteht sich als der erste Hackspace in Moskau, welcher von einem Besuch des 29C3 in Berlin inspiriert, schließlich im Juni 2011 seine Tore in Moskau öffnete.

In diesem mittlerweile geschlossenen Hackspace, kam die Idee für den Flipper Zero und den Flipper One auf. Die ursprüngliche Idee für die Geräte stammte von Pavel Zhovner, während Alexander Kulagin die Projektleitung übernahm und sich Valeria Aquamain als Art Director verantwortlich zeichnete.

Ursprünglich sollte ein Raspberry Pi Zero W als Grundlage genutzt werden. Von dieser Idee wurde Abstand genommen, da das Modul nicht in ausreichenden Stückzahlen geliefert werden konnte und die entsprechenden Compute-Module zu teuer gewesen wären.

Die Idee dahinter war, bestimmte Funktionalitäten in separater Hardware zu implementieren und den Raspberry Pi Zero W mit einer Linux-Distribution für anspruchsvollere Aufgaben zu betreiben.

Diese Variante erhielt den Namen Flipper One. Die Variante ohne entsprechende Linux-Möglichkeiten wurde schließlich zum Flipper Zero. Die Arbeit am Flipper One wurde zugunsten der Flipper Zero zurückgestellt.

Nachdem die Macher des Flipper Zero knapp 12.000 Vorbestellungen erhalten hatten, folgte eine entsprechende Kickstarter-Kampagne.

Die ursprünglich für das Hauptziel vorgesehenen 60.000 US-Dollar waren bereits nach acht Minuten ausfinanziert und 28 Tage später waren 4,4 Millionen US-Dollar erreicht und schlussendlich wurden über 4,8 Millionen US-Dollar eingesammelt.

Aufgrund der eingesammelten Summe wurden auch einige vorher als optional betrachtete Features mit in das Gerät aufgenommen. Dazu zählen ein alternativer dunkler Farbton, Bluetooth und NFC.

Designprozess

Für das Design, insbesondere das sogenannte Design for manufacturability (DFM), wurde mit der Firma Design Heroes zusammengearbeitet, welche ebenfalls in Moskau ansäßig sind. Beim DFM liegt der Fokus darauf, das Design des Produktes so zu gestalten, dass es in der Produktion keine größeren Probleme verursacht und einfach herzustellen ist.

Daneben unterstützte Design Heroes die Macher des Flipper Zero von den ersten Sketchen über die 3D-Modelle bis zu den ersten Prototypen, welche im 3D-Druck entstanden.

Während des Designprozesses wurden unterschiedlichste Änderungen vorgenommen, so wanderte z. B. der IR-Transceiver von der oberen Seite des Gerätes an die Seite. Grund hierfür war, dass der Transceiver auf der Oberseite oft verdeckt war, entweder durch Finger oder entsprechende Boards, welche mit der GPIO-Leiste genutzt wurden. Auch das Layout der GPIO-Leiste änderte sich einige Male, bis es seine jetzige Form erhielt.

Ebenfalls erst im Laufe des Design- und Umsetzungsprozesses, erfolgte die Erweiterung des Gerätes um einen microSD-Slot, um Dinge wie Code-Datenbanken und Ähnliches zu speichern, welche im 1 Megabyte großen Flash-Speicher des Gerätes selbst keinen Platz finden würden.

Während des Prozesses wurden immer wieder Anpassungen an der Hardware und der entsprechenden Verdrahtung gemacht. So wurde unter anderem die Batterie mit einem entsprechenden Konnektor versehen, damit diese einfach wechselbar ist, falls der Akkumulator mit der Zeit nicht mehr die gewünschte Leistung liefert.

Produktion

Bei der Ankündigung des Flipper Zero war von einer Auslieferung im Februar 2021 die Rede, was aus unterschiedlichsten Gründen nicht eingehalten werden konnte. Allerdings war dies aus Sicht eines Backers nicht weiter tragisch, was auch der exzellenten Kommunikation des Teams hinter dem Gadget zu verdanken ist.

So gab es für die Backer und andere Interessierte einen tiefen Einblick in die Probleme bei der Entwicklung und der Produktion. Prozesse wie die Herstellung der Gehäuse per Spritzguss wurden erklärt und die Herausforderungen dabei beschrieben. Die späteren Schritte wie der Test der Hardware wurden ebenfalls ausführlich beleuchtet.

Auch in diesem Projekt gab es Probleme im Zusammenhang mit der Chipkrise, sodass sich bestimmte Bestellungen für Bauteile, wie dem Bildschirm, verzögerten. Das führte auch dazu, dass einige Redesigns vorgenommen werden mussten, um nicht lieferbare Komponenten zu ersetzen.

So erwies es sich zeitweise als schwierig weitere ICs für das Laden der Batterie zu erhalten, der eingesetzte BQ25896RTWR war nicht mehr zu beschaffen, was für entsprechende Verzögerungen sorgte.

Erster Eindruck

Je nach getätigter Bestellung kann und wird der Flipper Zero mit entsprechendem Zubehör wie der Silikonhülle geliefert.

Der Flipper Zero selbst, wird in einer kleinen Pappbox geliefert. Wer diese öffnet, erhält einen Blick auf eine kurze Anleitung, sowie einen Aufkleber.

Darunter befindet sich ein USB-C-Kabel, welches mitgeliefert wird, sowie eine Ebene tiefer der eigentliche Flipper Zero. Das Gerät selbst misst 100 × 40 × 25 mm und wiegt 102 Gramm und liegt damit angenehm in der Hand.

Der Flipper Zero im Außeneinsatz

Allerdings wirkt es zumindest in der Vorstellung des Autors etwas größer als die Produktfotos es erahnen ließen.

Gefertigt wird das Gehäuse aus Polycarbonat, ABS-Kunststoff und Polymethylmethacrylat, besser bekannt unter dem Namen Acrylglass. Spezifiziert ist das Gerät für eine Betriebstemperatur von 0 bis 40 Grad.

Bildschirm

Der Flipper Zero verfügt über ein 1.4 Zoll (3,56 Zentimeter) großes Display, mit einer Auflösung von 128 × 64 Pixeln. Der Bildschirm ist ein klassisches LCD bei einem Stromverbrauch von 400 nA, wenn das Backlight deaktiviert ist. Intern ist dieser Bildschirm per SPI angebunden.

Der Bildschirm selbst ist beim Flipper immer aktiviert, nur die Hintergrundbeleuchtung wird entsprechend zugeschaltet.

Die Wahl des Bildschirmes war für den Flipper Zero eine zentrale Entscheidung, so wurde praktisch das gesamte Gerät um den Bildschirm herum gebaut. In der Überlegung stand auch ein E-Ink-Display, allerdings wurden hier die Aktualisierungsraten als zu gering bewertet und sich stattdessen für ein entsprechendes LCD entschieden.

Überblick

Gesteuert wird das Gerät über eine Art Steuerkreuz, inklusive Mitteltaste, sowie dem Zurück-Button. Neben dem Bildschirm ist eine Status-LED verbaut.

Der Flipper ist der Verpackung entstiegen

An der Oberseite des Gehäuses befindet sich eine GPIO-Leiste zur Ansteuerung externer Hardware. Sie wird mit 3,3 Volt betrieben, ist aber 5 Volt tolerant. Die Schräge auf der linken Seite enthält den Infrarot-Transceiver.

Auf der Unterseite befindet sich der Slot für die microSD-Karte. Dieser wird unter anderem für die Datenbanken benötigt, welche die Firmware des Flipper Zero nutzt.

Auf der rechten Seite befindet sich die USB-C-Buchse, mit welcher das Gerät geladen und mit einem Rechner verbunden werden kann.

Zwischen dem microSD-Slot und der USB-C-Buchse findet sich noch eine Öse, an welcher ein Band befestigt werden kann. Mitgeliefert wird ein solches Band allerdings nicht.

Das Herz der Maschine

Herz des Flipper Zero ist der STM32WB55, einem Mikrocontroller von STMicroelectronics. In diesem befindet sich ein ARM Cortex M4, welcher mit 64 MHz getaktet ist und als Applikationsprozessor dient, sowie ein ARM Cortex-M0+ welcher mit 32 MHz getaktet ist und als Netzwerkprozessor dient. Daneben verfügt der Mikrocontroller über 1 Megabyte Flashspeicher und 256 KByte SRAM.

In der Theorie sollte der Flipper Zero mit einer Batterieladung ungefähr 30 Tage durchhalten. So zumindest die Aussage während der Kickstarter-Kampagne. Mittlerweile werden sieben Tage Laufzeit angegeben. Es handelt sich um eine LiPo-Batterie mit einer Kapazität 2000 mAh. Geladen wird diese über den USB-C-Anschluss des Flipper Zero.

Im Gerät selbst sind eine Vielzahl an meist drahtlosen Schnittstellen implementiert. Im Kontext des Gerätes werden diese auch als Subsysteme bezeichnet.

Sub-Ghz-System

Der Flipper-Zero besitzt eine Antenne für Frequenzen unterhalb eines Gigahertz, welche in Verbindung mit dem CC1101-Chip genutzt wird. In der Terminologie des Gerätes ist dies das sogenannte Sub-Ghz-System. Innerhalb dieses Frequenzbereiches bewegen sich eine Reihe von Geräten, wie Garagentore, Autoschlüssel, mehr oder weniger smarte IoT-Geräte, wie schaltbare Steckdosen, was nicht weiter verwunderlich ist, da ein Teil der Frequenzen unterhalb eines Gigahertz zu den ISM-Bändern gehören.

Auch wenn das System als Sub-Ghz-System bezeichnet wird, bedeutet dies nicht, dass mit dem Flipper Zero alle Frequenzen unterhalb eines Gigahertz genutzt werden können.

Der CC1101 von Texas Instruments wird als sparsamer Transceiver angeboten. Er unterstützt die Frequenzbänder 300–348 MHz, 387–464 MHz und 779–928 MHz. Damit stehen auch nur diese Frequenzen im Sub-Ghz-System zur Verfügung.

Im Flipper Zero befindet sich auch ein Frequenzscanner; mit dem innerhalb dieser Bänder ermittelt werden kann, auf welcher Frequenz das System sendet. Dazu wird der entsprechende Sender aktiviert, während der Frequenzscanner läuft.

Der Frequenzscanner in Verbindung mit einem Autoschlüssel

Signale können im Sub-Ghz-System auch roh aufgezeichnet werden. Allerdings sollte beachtet werden, dass es sich beim Flipper Zero nicht um ein Software Defined Radio (SDR) handelt und somit das Signal bei der Rohaufzeichnung nicht immer komplett aufgezeichnet wird.

RFID

Neben dem Sub-Ghz-System, werden 125 kHz RFID-Tags, welche auch als Low Frequency-Tags bekannt sind, unterstützt. Der Flipper Zero unterstützt mehrere Modulation, wie Amplitudenmodulation, Phasenumtastung und Frequenzumtastung im Zusammenhang mit diesen Tags.

Zu den unterstützten Karten zählen EM400x, EM410x, EM420x, HIDProx, Indala. Diese werden unter anderem zur Zugangskontrolle genutzt. Solche Karten können mit dem Flipper einfach ausgelesen und geklont werden.

Near Field Communication

Im Rahmen der erfolgreichen Kickstarter-Kampange kam die Unterstützung für Near Field Communication, kurz NFC hinzu, was das Gerät in diesem Bereich abrundet.

Bei RFID sind eine Reihe von Frequenzbereichen definiert, das Band zwischen 125 und 134,2 kHz (Low Frequency), das Band auf 13,56 MHz (High Frequency) und das Band zwischen 856 und 960 MHz (Ultra High Frequency).

NFC setzt ebenfalls auf der Frequenz 13,56 MHz auf und nutzt diese für entsprechende Übertragungen über kurze Entfernungen von wenigen Zentimetern.

Während RFID auf hohe Reichweite optimiert ist, meist primitive Protokolle nutzt, keine bzw. wenig Sicherheit bietet, sieht dies bei NFC-Tags anders aus. Hier wird auf komplexere Protokolle und kryptografische Absicherung gesetzt.

Im Gegensatz zu RFID ist bei NFC der bidirektionale Datenaustausch zwischen zwei Geräten möglich. Hier unterstützt das Gerät aktuell unterschiedlichste Standards, wie ISO-14443A/B, NXP Mifare® Classic/Ultralight/DESFire, FeliCa™ und die NFC Forum-Protokolle.

Damit ist das Gerät zu einer Vielzahl an Karten, wie Kreditkarten und dem Personalausweis kompatibel. Auch Zugangschips, wie sie in vielen Gebäuden benutzt werden, können ausgelesen werden. Je nach Möglichkeit wird nach der generellen Erkennung einer Karte; die Bearbeitung in einer speziellen Applikation innerhalb der Firmware vorgeschlagen.

Die UID wurde ausgelesen

Wird z. B. ein Mifare Classic eingelesen, so können anschließend mit der entsprechenden App die Schlüssel ausgelesen werden.

Auch Amiibos können emuliert werden

Grundsätzlich beherrscht der Flipper Zero bei allen Subsystemen nicht nur das Auslesen der Informationen, sondern auch die Emulation z. B. die entsprechender NFC-Tags. So ist z. B. die Emulation von Amiibos für die Nintendo Switch ohne Probleme möglich.

Bluetooth

Eine weitere Funktechnik, die der Flipper Zero beherrscht, ist Bluetooth Low Energy in Version 5, bei einer Datenrate von 2 Mbps.

Bluetooth muss hierbei in den Einstellungen der Flipper aktiviert werden, anschließend kann es unter anderem dafür genutzt werden sich mit der mobilen App zu verbinden.

Daneben befindet sich unter den Plugins eine Beispielapplikation zur Nutzung als Bluetooth-Fernbedienung.

Infrarot

Infrarot ist nicht erst seit dem Start des James-Webb-Teleskops in aller Munde. Der Flipper Zero verfügt über einen Infrarot-Transceiver zum Senden und Empfangen entsprechend kodierter Signale. Der Transceiver arbeitet bei einer Wellenlänge von 800 bis 950 nm.

In der Firmware selbst wird hierfür eine Applikation mitgeliefert, welche als eine Art Universalfernbedienung fungiert und per Wörterbuch-Attacke alle entsprechenden IR-Codes sendet, um den Kanal zu wechseln oder das Gerät abzuschalten. Damit wäre es beispielhaft möglich im Elektronikmarkt alle Fernseher abzuschalten; auch wenn es sicherlich sinnvollere Varianten der Nutzung gibt.

iButton

Eine kontaktbehaftete Schnittstelle, welche vom Flipper Zero unterstützt wird, ist die iButton-Schnittstelle. Diese auch als Dallas Touch Memory bekannte Technik wird z. B. zur Zugangskontrolle in Gebäuden benutzt.

Die Kontaktpunkte für die Schnittstelle

Hierbei wird der iButton auf eine entsprechende Schnittstelle gelegt und ein mechanischer und elektrischer Kontakt hergestellt. Anschließend findet die Kommunikation über 1-Wire statt.

Hierfür wurde am Flipper Zero eine Kontaktmöglichkeit auf der Unterseite des Gerätes geschaffen, mit welcher die entsprechende Hardware ausgelesen, beschrieben und emuliert werden kann. Unterstützt werden die Protokolle CYFRAL und Dallas DS1990A.

GPIO

Die Einsatzmöglichkeiten des Flipper Zero sind nicht nur auf Funktechnologien beschränkt. Über die GPIOs, welche sich oben am Gehäuse befinden, kann das Gerät mit externer Hardware verbunden werden.

Die GPIO-Leiste des Flipper Zero

Damit ist es möglich den Flipper für das Flashen von Hardware oder das Debugging und Fuzzing zu benutzen. Über diese Funktionalität kann das Gerät auch als USB-UART-Bridge genutzt werden.

Der Flipper Zero unterstützt die Spannungen 3,3 und 5 Volt, wobei letztere in den Einstellungen aktiviert werden muss. Pro Pin werden maximal 20 mA geliefert.

Im Shop des Herstellers werden unter anderem Entwicklungsboards mit Wi-Fi und entsprechende Prototyping-Boards angeboten.

Visuell, Taktil und Musikalisch

Neben dem Bildschirm gibt der Flipper Zero über eine LED, einen Buzzer, sowie per Vibration Rückmeldung an die Außenwelt und den Nutzer. Der eingebaute Buzzer arbeitet in einer Frequenz von 100 bis 2500 Hz, bei einer maximalen Lautstärke von 87 dB.

Das Plugin MusicPlayer auf dem Flipper Zero

Er kann mit der in der Firmware integrierten Musik-App getestet werden. In den Einstellungen kann die Lautstärke generell auf null reduziert werden, sodass das Gerät auch weniger auffällig benutzt werden kann.

Bad USB und U2F

Über den USB-Port, kann das Gerät zum Pentesting per USB genutzt werden. Diese als Bad USB firmierte Technik, emuliert eine USB-Tastatur und kann entsprechende Skripte ausführen. Dazu wird das gewünschte Skript ausgewählt und das Gerät an den Rechner der Wahl angeschlossen.

Als Skriptsprache wurde Ducky Script implementiert, sodass eventuell vorhandene Skripte übernommen werden können. Bekannt ist Ducky Script durch Rubber Ducky, einem Keystroke-Injection-Tool.

Genutzt wird diese Funktionalität z. B. bei Sicherheitsüberprüfungen von Unternehmen, bei welchen als gewöhnliche USB-Sticks getarnte Bad USB-Geräte vor oder im zu testeten Unternehmen platziert werden. Die Hoffnung ist es, dass der Finder dieser Sticks diese am Arbeitsrechner anschließt und damit die entsprechenden Skripte zur Ausführung bringt.

Natürlich kann das Ganze auch für unlautere Zwecke genutzt werden. Damit handelt sich um eine der vielen Dual-Use-Funktionalitäten des Flipper Zero.

Daneben gibt es Unterstützung für U2F, also für eine entsprechende Zwei-Faktor-Authentifizierung, wie sie z. B. auch mit dem YubiKey umgesetzt wird.

Einrichtung

Nachdem der Flipper Zero ausgepackt wurde, kann mit der Ersteinrichtung begonnen werden. Der Flipper Zero verfügt über einen microSD-Port, in welchem eine entsprechende microSD-Karte hinterlegt werden sollte. Bei zu kurzen Fingernägeln, kann der Vorgang des Einsetzten der Karte etwas unpraktisch sein, ist aber mit etwas Geschick zu bewerkstelligen.

In der Theorie funktioniert das Gerät auch ohne eine entsprechende microSD-Karte, allerdings ist die Praktikabilität etwas eingeschränkt, da auf der microSD-Karte entsprechende Datenbanken und Ähnliches gespeichert werden.

Eine microSD-Karte wird nicht mitgeliefert. Bei der Wahl der Karte sollte auf Karten von Markenherstellern gesetzt werden. Hintergrund ist, dass der Flipper Zero per SPI-Modus auf die Karten zugreift, während bei einem Rechner im Normalfall mit dem SDIO-Modus gearbeitet wird.

Bei günstigen microSD-Karten ist die Unterstützung für den SPI-Modus in vielen Fällen fehlerhaft oder unzureichend implementiert und kann zu Problemen führen.

Unterstützt werden microSD-Karten bis zu einer Kapazität von 128 GB, allerdings genügt in den meisten Fällen eine Karte mit einer Kapazität von 16 oder 32 GB. Die microSD-Karte für den Flipper Zero kann FAT32 oder exFAT formatiert sein.

Die Formatierung kann auch über das Gerät selbst vorgenommen werden, sodass hier keinerlei Vorbereitung am Rechner notwendig ist. Dabei wird die microSD-Karte bis zu einer Größe von 32 GB mit FAT32 formatiert, darüber hinaus mit exFAT.

Firmware-Update

Da der Flipper Zero mit einer relativ alten Firmware ausgeliefert wird, sollte im ersten Schritt die entsprechende Firmware aktualisiert werden. Dazu soll laut Anleitung die Webseite update.flipperzero.one besucht werden, welche die entsprechenden Möglichkeiten des Updates aufzeigt.

Angeboten werden zwei Möglichkeiten, das Gerät zu aktualisieren. Bei der ersten Möglichkeit wird die Applikation qFlipper genutzt, welche als Desktop-Anwendung unter Linux, macOS und Windows zur Verfügung steht.

Daneben existiert mittlerweile auch die Möglichkeit das Gerät über die entsprechende mobile App (iOS, Android) zu aktualisieren. Allerdings steht diese Möglichkeit erst neueren Firmware-Versionen zur Verfügung, sodass bei der Erstaktualisierung die qFlipper-Applikation genutzt werden muss.

‎Flipper Mobile App
Preis: Kostenlos
Flipper Mobile App
Preis: Kostenlos

Neben diesen beiden Methoden wird unter my.flipp.dev an einer Methode gearbeitet, die Aktualisierung über den Browser vorzunehmen. Diese wird allerdings noch als experimentell eingestuft und sollte nicht genutzt werden.

Das Firmware-Update wird durchgeführt

Nachdem Start der Applikation kann der Flipper Zero mit dem Rechner verbunden werden. Wurde dieser erkannt, kann das Update gestartet werden.

qFlipper weist auch darauf hin, ob eine microSD-Karte im Gerät erkannt wurde. Auch ohne microSD-Karte kann die Firmware-Aktualisierung vorgenommen werden. Wird später eine entsprechende Karte im Gerät installiert, können die entsprechenden Datenbanken ebenfalls über qFlipper auf diesem installiert werden.

Die eigentliche Aktualisierung selbst dauert nur knapp eine bis zwei Minuten und ist relativ schnell abgeschlossen. Damit ist das Gerät einsatzbereit und kann genutzt werden.

Der grüßende Delfin

Am Anfang begrüßt der Cyberdelfin den Nutzer und bedankt sich unter anderem für die Unterstützung auf Kickstarter. Anschließend kann das Gerät genutzt werden.

Der Delfin bedankt sich für die Unterstützung

Der Delfin ist hierbei eine Anspielung auf die Kurzgeschichte Johnny Mnemonic, von William Gibson, in welcher ein entsprechender Cyberdelfin mit dem Namen Jones vorkommt.

Die Steuerung erfolgt, wie oben erwähnt, über das Steuerkreuz und den Bestätigungs- bzw. Zurück-Button.

Mit einem Druck des Rechts-Button wird der Pass des Cyberdelfins angezeigt. Der Cyberdelfin ist ein elementarer Bestandteil des Flipper Zero und soll eine Art Tamagotchi-Erlebnis liefern. Neben einem Namen, der automatisch für das Gerät vergeben wird, verfügt der Delfin über ein Level, das aktuell bis Level 3 gesteigert werden kann. Dieses Level steigt mit der Nutzung Flipper Zero. Daneben verfügt der Delfin über eine Gemütslage, von Glücklich zu Okay bis hin zu Schlecht. Der Name wird bei der Produktion fest vergeben. Dazu wurde ein neuronales Netz mit den Namen der Pokémon trainiert.

Ein Druck auf den Oben-Button führt zum Sperrmenü des Flipper Zero. In diesem kann das Gerät gesperrt werden, eine PIN gesetzt und in der Theorie der sogenannte DUMB mode aktiviert werden.

In diesem noch nicht implementierten Modus, soll das Gerät nur noch Spiele spezifische Funktionalität anzeigen und somit wie ein Spielzeug aussehen, falls es einmal unauffälliger zugehen soll.

Die Links- und Unten-Buttons können im Menü frei belegt werden und sind im Auslieferungszustand mit dem Sub-Ghz-System und dem NFC-System belegt.

Ein Druck auf die mittlere Taste öffnet das Menü. Neben dem Zugriff auf die unterschiedlichen Subsysteme finden sich hier die Einstellungen und die Plugins. Eines der Plugins ist das Spiel Snake, sodass Freunde eines alten Nokia-Telefons auf ihre Kosten kommen.

In den Einstellungen können Informationen zur Hardware eingesehen werden, das System konfiguriert und Informationen über den genauen Stromverbrauch des Gerätes ermittelt werden.

Neben der Bedienung über das Menü- bzw. das Steuerkreuz gibt es einige Spezialkombinationen. Für einen Neustart z. B. wird das Steuerkreuz nach links gedrückt und gleichzeitig die Zurück-Taste für einige Momente gedrückt. Der Neustart ist nach knapp zwei Sekunden abgeschlossen und das Gerät kann dann wieder genutzt werden.

Kompanion-Applikationen

Bei Firmware-Upgrade wurde bereits erläutert, dass es für den Flipper Zero unterschiedliche Applikationen existieren. Diese sollen noch einmal kurz im Detail beleuchtet werden.

qFlipper

Die Applikation qFlipper, dient unter anderem der Aktualisierung des Gerätes. Daneben können dort Informationen über die Firmware und die Datenbanken ermittelt werden.

qFlipper bietet ein Update an

Was die Firmware-Aktualisierungen betrifft, ermöglicht qFlipper die Auswahl der entsprechenden Channels, sodass der Flipper Zero auch mit der Entwicklungsfirmware bespielt werden kann.

Auch ein Zugriff auf die microSD-Karte ist über qFlipper möglich, sodass über diesen Weg Dateien auf die microSD-Karte gelegt werden können oder von dort heruntergeladen werden können.

Der Quelltext der App ist auf GitHub verfügbar und unter der GPL3 lizenziert und damit freie Software. Technisch handelt es sich um eine in C++ geschriebene Applikation, welche das Qt-Framework nutzt.

App für Mobilgeräte

Neben qFlipper existieren für iOS und Android entsprechende mobile Apps. Mit dieser kann die Firmware ebenfalls aktualisiert werden und es können interne Informationen über das Gerät eingesehen werden.

Über die mobilen Apps können unter anderem die ausgelesenen Schlüssel verwaltet werden

Ein wichtiges Feature der Applikation ist die Verwaltung eingelesener Schlüssel und Ähnlichem. Über den Archive-Tab der Applikationen können diese bequem verwaltet und entsprechend benannt werden.

Zwar verfügt der Flipper Zero über eine Bildschirmtastatur, über welche die Schlüssel benannt werden können, allerdings ist dies mit den mobilen Applikationen wesentlich angenehmer.

Auch das Streaming des Bildschirminhaltes des Flipper Zero, z. B. für Screenshots, ist mit der App möglich. Genau wie die qFlipper-Applikation enthalten die mobilen Apps einen Dateimanager, um auf den internen und externen Speicher des Flipper Zero zuzugreifen.

My Flipper

Neben diesen nativen Applikationen existiert mit My Flipper eine Webapplikationen, welche aktuell nur im Browser Chrome funktioniert. Geschuldet ist dies der Nutzung der Web Serial API.

Die Webapplikation My Flipper

Über die Webapplikation, können Spielereien vorgenommen werden, z. B. die Nutzung des Flippers als Ausgabegerät für Zeichnungen, welche in der Webapplikation vorgenommen werden oder auf die Kommandozeile zugegriffen werden.

Kommandozeile

Dies funktioniert auch per Terminal z. B. unter macOS. Dazu muss nach dem Anschluss des Flipper Zero das entsprechende Gerät ermittelt werden:

ls /dev/cu.usbmodemflip*

Nun kann sich mit dem Gerät verbunden werden:

screen /dev/cu.usbmodemflip_Uchfun1

Über die Kommandozeile können unter anderem die GPIO-PINs gesteuert werden.

Dokumentation und Community

Mit docs.flipperzero.one verfügt der Flipper Zero über eine entsprechende Dokumentation, welche im Moment allerdings noch an vielen Stellen lückenhaft oder nicht vorhanden ist.

Wohl unter anderem deshalb sucht Flipper Devices nach einem Technical Writer.

Allerdings hilft die Community bei vielen Fragen rund um das Gerät weiter. Neben dem offiziellen Forum existiert ein entsprechender Discord-Server.

Eine weitere Auflistung rund um die Community und interessanter Projekte rund um den Flipper Zero findet sich bei Awesome Flipper, welches sich als guter Einstiegspunkt anbietet.

Die offiziellen Applikationen rund um den Flipper Zero, sowie die Firmware sind auf GitHub verfügbar. Die mobilen Applikationen sind unter der MIT-Lizenz, qFlipper und die Firmware unter der GPL3 lizenziert und damit freie Software.

Made in Russia

Mit dem Projekt, wurde die Firma Flipper Devices Inc., nach US-amerikanischem Recht gegründet und registriert, bei welcher es sich, zumindest was den Sitz in den USA angeht, um eine Briefkastenfirma handelt.

Das eigentliche Büro des Projektes bzw. der Firma befindet sich Moskau. Mit der Invasion der Ukraine stellte sich die Frage, ob die Geräte aufgrund der politischen Lage noch ausgeliefert werden. Das Team formulierte seine Gedanken und die entsprechenden Informationen darüber klar:

Our team consists of both Ukrainians and Russians. And all of us have friends and relatives on both sides. We are all very worried about the ongoing events and consider it necessary to speak out.

We are radically against the ongoing „special military operation*“ and none of our team members support it. All sensible Russian-speaking professionals in the IT industry adhere to the same opinion.*

We want to live and develop in a peaceful, professional, and competitive environment where the main values are honesty, common sense, laws, and human rights. Where contracts are respected, institutions work, and international business can be created.

Current events will not affect the Flipper Zero production in any way, and all ordered devices will be shipped to backers and those who have pre-ordered, though there may be delays for customers from the CIS countries due to logistics disruptions in the region.

*We refer to these events using the „officially approved“ wording in order to comply with the new law, violation of which is punishable by up to 15 years in prison.

Hier bleibt es zu beobachten, wie sich die Lage in den nächsten Jahren entwickelt und ob dies die Weiterentwicklung des Gerätes beeinträchtigt.

Fazit

Nachdem das Projekt bei Kickstarter ein großer Erfolg wurde, änderte das Team seine Pläne hinweg von einer Kleinserie für wenige Professionelle hin zu einem professionellen Anbieter von Pentesting-Geräten. Neben dem eigenen Shop soll in Zukunft auch über Plattformen wie Amazon geliefert werden.

Auf der Hardware-Seite erhält der Nutzer ein ausgereiftes Gerät und auch die Firmware weiß an einigen Stellen bereits zu glänzen, auch wenn es hier noch weiterführende Pläne gibt.

Aktuell findet der Support für das dynamische Laden von ELF-Binäries für die Plugins in der Erprobung. Im Moment müssen diese direkt mit der Firmware kompiliert und anschließend die Firmware geflasht werden. Das eröffnet die Möglichkeit, unterschiedlichste Plugins einfach mit dem Gerät nutzen zu können.

Bis zur Version 1 der Firmware, soll unter anderem die Dokumentation wesentlich verbessert und die Anzahl der unterstützten Funkprotokolle erhöht werden.

Die Kompanion-Applikationen wirken ausgereift und werden sicherlich in Zukunft durch entsprechende Updates aufgewertet.

Während das Gerät für Backer 119 US-Dollar kostete, beträgt der reguläre Retail-Preis 169 US-Dollar. Bestellt werden kann es über den offiziellen Shop, wobei mit längeren Lieferzeiten zu rechnen ist. Wer als Kickstarter-Backer seinen Flipper Zero noch nicht in den Händen hält, kann den aktuellen Status der Auslieferung auf ship.flipp.dev verfolgen.

Alles in allem erhält der Nutzer ein Gerät, welches viele Funktionalitäten, welche es früher nur einzeln gab, in einem kompakten System zusammenfasst. Mit weiteren Verbesserungen und Erweiterungen der Firmware und Kompanion-Applikationen wird der Flipper Zero zu einem wertvollen Begleiter.

Dieser Artikel erschien ursprünglich auf Golem.de und ist hier in einer alternativen Variante zu finden.

KVM Host aufsetzen und einrichten

Virtualisierung an sich ist eine feine Sache, man nehme einen Rechner und simuliere auf diesem mehrere Rechner. Dank KVM ist die ganze Sache auch ziemlich einfach. Dazu installiert man auf einem Rechner ein Ubuntu Server 12.10 (mit dem OpenSSH Paket, und einem Nutzer (in diesem Fall „seeseekey“)). Dabei sollte man darauf achten, das der Nutzer kein verschlüsseltes „home“-Verzeichnis hat, sonst könnte es später Probleme mit der Verwendung von SSH Schlüsseln geben. Anschließend überprüft man auf der Konsole mittels:

cat /proc/cpuinfo

ob die CPU über die entsprechende Virtualisierungsfunktionen verfügt. Die erkennt man in der Sektion „flags“ der Ausgabe. Dort muss für Intel CPUs das Flag „vmx“ und für AMD CPUs das Flag „svn“ vorhanden sein. Ist dies der Fall so kann KVM mittels:

sudo apt-get install qemu-kvm libvirt-bin virtinst

installiert werden. Ein anschließendes:

kvm-ok

überprüft dann nochmal ob die CPU wirklich für KVM geeignet ist. Dabei ist zu beachten das es „kvm-ok“ nur unter Ubuntu gibt, andere Distribution enthalten es aller Wahrscheinlichkeit nach nicht. Nun muss der Nutzer noch der Gruppe „libvirtd“ hinzugefügt werden. Auf der Konsole ist dazu ein:

sudo adduser seeseekey libvirtd

nötig. Danach sollte der KVM Host neugestartet werden, bzw. sich an- und abgemeldet werden. Zur Verwaltung der Maschinen wird der „Virtual Machine Manager“ benutzt. Dieser wird auf der entsprechenden Zielmaschine (welche nicht identisch mit dem KVM Host sein muss) mittels:

sudo apt-get install virt-manager

installiert. Auf der entsprechenden Maschine, welche die Verwaltung übernimmt sollte ein SSH Schlüssel erzeugt werden. Dies geschieht auf der Konsole:

ssh-keygen -t rsa -C ""

Nun übertragen wir den Schlüssel auf den KVM Host, damit wir uns mit diesem verbinden können, was dann so aussehen könnte:

ssh-copy-id -i ~/.ssh/id_rsa.pub seeseekey@kvmhost

Danach sollte der „Virtual Machine Manager“ gestartet werden. Über „Datei“ -> „Verbindung hinzufügen“ wird im darauf folgenden Dialog der KVM Host hinzugefügt.

Eine Verbindung wird hinzugefügt

Nun wird noch eine Netzwerkbrücke eingerichtet. Diese dient dazu, das man die virtuellen Maschinen auch von außen ansprechen kann. Ohne diese Brücke befinden sich die Maschinen hinter einem NAT und können nur mit dem KVM Host kommunizieren.

Um die Bridge zu erstellen wird die Datei „/etc/network/interfaces“ geändert. Auf einem normalen System sollte diese wie folgt aussehen:

# This file describes the network interfaces available on your system
# and how to activate them. For more information, see interfaces(5).

# The loopback network interface
auto lo
iface lo inet loopback

# The primary network interface
auto eth0
iface eth0 inet dhcp

Nun wird „auto eth0“ in „auto br0“ und „iface eth0 inet dhcp“ in „iface br0 inet dhcp“ geändert. Anschließend fehlt nur noch die Zeile:

bridge_ports eth0

welche am Ende hinzugefügt wird. Damit sieht die neue „/etc/network/interfaces“ dann wie folgt aus:

# This file describes the network interfaces available on your system
# and how to activate them. For more information, see interfaces(5).

# The loopback network interface
auto lo
iface lo inet loopback

# The primary network interface
auto br0
iface br0 inet dhcp
bridge_ports eth0

Danach geben wir im Terminal:

/etc/init.d/networking restart

mit root-Rechten ein und schon ist die entsprechende Konfiguration wirksam.

Die Storage Pools des KVM Host

Nachdem dies geschehen ist kann man eine neue virtuelle Maschine anlegen. Wenn man ein Windowssystem installiert, sollte man darauf achten, das man die entsprechenden Treiber anschließend installiert. Diese findet man unter http://alt.fedoraproject.org/pub/alt/virtio-win/latest/images/bin/.

Bei den Storage Pools, in welchem die Daten für die virtuellen Maschinen liegen, empfiehlt es sich den „default“ Pool außen vor zu lassen. Stattdessen legt man sich einen Pool „images“ und einen Pool „machines“ an. Im „images“ Pool lagert man dann alle Betriebsystemimages für die Installation neuer Maschinen. Im „machines“ Pool hingegen, sollten sich die installierten Maschinen befinden.

Das Quellgerät muss auf die Netzwerkbrücke eingestellt werden

In jeder virtuellen Maschine muss dabei das Quellgerät in der Netzwerkkonfiguration auf die Netzwerkbrücke (br0) eingestellt werden. Damit ist die Maschine ein Teil des Netzwerkes in welchem sich auch der KVM Host befindet. Bei den virtuellen Maschinen, empfiehlt es sich bei grafischen Systemen in der entsprechenden Konfiguration unter „Video“ das Modell „vmvga“ auszuwählen.

Weitere Informationen gibt es unter:
http://wiki.ubuntuusers.de/SSH
http://wiki.ubuntuusers.de/KVM
http://wiki.ubuntuusers.de/virt-manager
http://wiki.ubuntuusers.de/Virtualisierung
http://de.wikipedia.org/wiki/Kernel-based_Virtual_Machine