Paketmanager – Software-Installation und Aktualisierung

Paketmanager haben den Prozess der Software-Installation und Aktualisierung vereinfacht und viele Probleme der Vergangenheit gelöst. Heute sind sie ein integraler Bestandteil vieler Systeme. Während der durchschnittliche Windows-Nutzer wahrscheinlich weniger mit der Begrifflichkeit eines Paketmanagers anfangen kann, sieht es bei Nutzern unixoider Systeme meist anders aus.

Vor allem bei Linux-Systemen sind sie ein essenzieller Bestandteil der allermeisten Distributionen und kommen hier in den unterschiedlichsten Formen vor. Mittlerweile haben sie sich allerdings darüber hinaus ausgebreitet und sind heute auch unter macOS und Windows zu finden.

Über diese Grenzen hinaus haben sich Paketmanager auch in anderen Bereichen etabliert hat, beispielsweise im Paket- und Abhängigkeitsmanagement innerhalb der Softwareentwicklung.

Unabhängig vom spezifischen Paketmanager folgen diese in der Regel einem ähnlichen Ablauf: Ein Nutzer beabsichtigt, eine Anwendung bzw. ein Paket zu installieren. Der Paketmanager identifiziert die erforderlichen Abhängigkeiten und installiert diese zusammen mit der gewünschten Software.

Definition

Doch was zeichnet einen Paketmanager aus? Grundsätzlich handelt es sich bei einem solchen um ein Werkzeug oder eine Sammlung an Werkzeugen, die dazu dient Software zu installieren, sie zu aktualisieren und wieder zu entfernen. Im Idealfall ist diese Entfernung rückstandslos. Auch die Konfiguration der Software ist eine Fähigkeit, welche von vielen Paketmanagementsystemen beherrscht wird.

Ziel ist es meist, die manuelle Installation und Verwaltung von Software unnötig zu machen, sodass diese im Idealfall immer über den Paketmanager bezogen werden kann.

Neben der eigentlichen Bereitstellung der gewünschten Software, ist ein wichtiger Teil des Paketmanagements die Installation und Verwaltung der Abhängigkeiten, welche von der Software benötigt werden. Dies umfasst beispielsweise die Handhabung verschiedener Versionen von Bibliotheken, die erforderlich sind, wenn mehrere installierte Anwendungen unterschiedliche Versionen einer Bibliothek benötigen.

Ein Paket umfasst in solchen Systemen, neben der eigentlichen Anwendung, eine Reihe von zusätzlichen Metadaten, welche als Informationen über das Paket und der Verwaltung dienen.

Daneben führen die Systeme Buch über installierte Software, was z. B. bei der Aktualisierung installierter Anwendungen von Belang ist.

Typen von Paketmanagern

Paketmanager lassen sich in verschiedene Typen einteilen. Einerseits existieren systemgebundene Paketmanager wie das Advanced Packaging Tool (APT), die integraler Bestandteil des jeweiligen Betriebssystems sind und eine konfliktfreie Installation von Anwendungen gewährleisten.

Ziel dieser Paketmanager ist die Softwareverwaltung für den Nutzer des Systems. Auch ist es bei diesen systemspezifischen Paketmanagern in den meisten Fällen so, dass Abhängigkeiten wie Bibliotheken im Idealfall nur einmal installiert werden.

Eine weitere Art von Paketmanagementsystemen sind App Stores. Hier steht jede Applikation für sich und wird mitsamt ihrer Abhängigkeiten installiert. Das bedeutet, dass z. B. Bibliotheken immer wieder mitgeliefert werden. Hier wird in der Theorie Speicherplatz verschenkt, da häufig verwendete Bibliotheken mehrfach vorhanden sein können.

Eine letzte und trotzdem in ihrer Wichtigkeit nicht zu unterschätzende Kategorie von Paketmanagern sind sprachspezifische Paketmanager. Bei diesen geht es um das Paket- und Abhängigkeitsmanagement von Bibliotheken im Rahmen der Softwareentwicklung. Beispiele für diese Manager sind Maven, Cargo und NPM. Sie werden vor allem in den vergangenen Jahren verstärkt eingesetzt. Einen Überblick über diese sprachspezifischen Paketmanager bietet die Webseite libraries.io.

Am Anfang war der Code

In frühen Systemen existierten keine Paketmanager im heutigen Sinne. Entweder wurden die mitgelieferten Systemwerkzeuge genutzt, oder die benötigte Software lag im Quelltext vor und wurde anschließend kompiliert und installiert.

Eine Applikation wird kompiliert

Im Laufe der Zeit wurden nicht nur die Systeme komplexer, sondern auch die auf ihr genutzten Anwendungen. Mithilfe von Build Automation Tools wie Make, wurde es möglich Software anhand des sogenannten Makefiles zu bauen. Allerdings wurde auch hier vorausgesetzt, dass die benötigten Abhängigkeiten auf dem System vorhanden waren.

Über den Befehl make kann der entsprechende Vorgang angestoßen werden. Damit vereinfachten Makefiles die Erzeugung der Software. Statt den Compiler, dazugehörige Linker und weitere Werkzeuge selbst aufrufen zu müssen, fungiert das Makefile als Mittler.

Abhängigkeiten

Im ersten Moment scheint es, als ob die Installation der Software aus dem Quelltext leicht von der Hand geht. Der Quelltext muss bezogen werden und anschließend kann die Applikation kompiliert und installiert werden.

Allerdings steht ein Programm meist nicht für sich, sondern ist auf gewisse Abhängigkeiten, wie verwendete Bibliotheken angewiesen. Sind diese Abhängigkeiten in einer falschen Version installiert, oder nicht vorhanden, schlägt die Erstellung der Applikation fehl.

Ein weiteres Problem ist, dass unixoide Systeme nicht unbedingt identisch sind und sich in kleineren und größeren Feinheiten unterschieden. Eine Lösung für diese Probleme bieten Werkzeuge wie autoconf vom GNU-Projekt und später CMake.

Über diese Build-Automatisierungstools wird das benötigte Makefile generiert, welches dann auf die Eigenheiten des eigentlichen Systems angepasst ist. So wird unter anderem überprüft, ob die benötigten Abhängigkeiten vorhanden sind und unter Umständen abgebrochen, wenn dies nicht der Fall ist.

Bislang nicht betrachtet wurde die Deinstallation einer Anwendung. Neben den eigentlichen Anwendungsdateien, eventuellen Bibliotheken und Konfigurationsdateien können hierzu auch Dateien zählen, welche während der Laufzeit der Anwendung erzeugt wurden.

Diese von Hand zu entfernen, ist im besten Fall ein zeitaufwendiger Prozess. Spätestens an dieser Stelle erweist sich ein funktionierendes Paketmanagementsystem als Segen.

Quell- vs. Binärpakete

Bei dem oben beschriebenen Verfahren wurde die Software direkt auf dem System kompiliert. Dies hat einige Vorteile. So kann die jeweilige Software mit entsprechender CPU-Optimierung kompiliert werden und somit optimal auf das System abgestimmt werden. Allerdings nimmt ein solcher Vorgang Zeit in Anspruch, vorwiegend bei der Kompilierung größerer Softwarepakete wie einem Browser.

Bei Paketmanagern wird hier die Unterscheidung zwischen Quell- und Binärpaketen getroffen. Quellpakete enthalten den Quellcode der Anwendung und werden direkt auf dem Rechner des Nutzers kompiliert.

Binärpakete hingegen enthalten eine vorkompilierte Anwendung, welche auf eine bestimmte Architektur optimiert ist. Damit muss das Paket nur noch vom Paketmanager heruntergeladen, entpackt und installiert werden. Neben der fehlenden Optimierung auf den konkreten CPU-Typ haben Binärpakete weitere Nachteile. Viele Anwendungen verfügen über bestimmte Schalter zu Compile-Zeit, um bestimmte Module und Funktionalitäten in die Anwendung zu integrieren. Ist dies während der Erstellung des Binärpaketes nicht geschehen, so kann das Modul bzw. die gewünschte Funktionalität nicht ohne Weiteres genutzt werden.

Anfänge der Paketmanager

Mit der Idee der Paketierung war der Gedanke zu einem Paketmanager nicht mehr weit. Auch wenn solche Manager unter Linux gängig wurden, gab es sie in Ansätzen bereits davor.

Einer der ersten Paketmanager war das System Management Interface Tool (SMIT) für AIX, welches mit der Version 3.0 von AIX im Jahr 1989 Einzug hielt. Unter der Oberfläche wurde für diese Aufgabe installp als Backend genutzt.

Im Linux-Bereich zählte das package management system (pms) zu den ersten Paketmanagern. Dieses erschien in Version 1.0 Mitte des Jahres 1994. Genutzt wurde dieses in der Distribution Bogus Linux. Dies führte historisch betrachtet unter anderem zum RPM-Paketmanager, welcher ursprünglich von Red Hat stammt und 1995 mit Red Hat Linux 2.0 ausgeliefert wurde.

In einen ähnlichen Zeitrahmen fallen die Entwicklung des Debian Package Managers, der vom StopAlop, einem weiteren Paketmanager aus der Frühzeit der Paketmanager, inspiriert wurde.

Die erste Version des Debian Package Managers wurde 1994 von Ian Murdock entwickelt, damals noch in Form eines Shellskriptes. Aus diesem entstand im Laufe der Jahre das dpkg der Neuzeit.

Aus diesen Low-Level-Paketmanagern entwickelten sich schließlich Systeme, welche Repositorys der verfügbaren Software bereithielten und diese zur Installation derselben nutzten, sodass auch das Problem der Paketbeschaffung bzw. der eigenen Paketierung in den meisten Fällen gelöst war.

Im Jahr 1995 begannen viele Paketmanager mit der Implementierung eines Workflows, der mit dem Herunterladen des Pakets beginnt und die automatische Auflösung sowie Installation von Abhängigkeiten beinhaltet.

Neben eigentlichen Applikationen wurden Systempaketmanager auch genutzt, um Bibliotheken und andere Funktionalität bestimmter Programmiersprachen wie Python über diese zu installieren. Heutzutage wird dies mehrheitlich über sprachspezifische Paketmanager gelöst.

Low-Level- und High-Level-Paketmanager

Werkzeuge wie dpkg, zählen wie oben bereits erwähnt zu den Low-Level-Paketmanagern. Zwar vereinfachen sie die Installation von Paketen, aber aus Sicht des Nutzers, sind immer noch viele manuelle Schritte notwendig, um das System auf einem aktuellen Stand zu halten.

Low-Level-Paketmanager samt Herkunft und High-Level-Paketmanager

Hier kommen High-Level-Paketmanager ins Spiel. Diese vereinfachen die Bedienung und dienen sozusagen als Frontend für den eigentlichen Nutzer. Daneben gruppieren sie Operationen der zugrundeliegenden Low-Level-Paketmanager.

Neben dem traditionellen Weg, Software als Archiv auszuliefern, wurde mit den Paketmanagern für die jeweiligen Distributionen ein zentrales Repository mit Software geschaffen, welches von der jeweiligen Distribution gepflegt wurde.

Interessant an diesem zentralen Repositorys ist, dass die Software, welche in diesen vorliegt, technisch betrachtet ein Fork der Originale ist. Der Vorteil dieser Vorgehensweise ist die Entkopplung, sodass eine Distribution eigene Aktualisierungen für eine Anwendung bereitstellen kann. Dies gilt auch für den Fall, dass die Software nicht mehr aktiv unterstützt wird.

Auch wenn von einem zentralen Repository die Rede ist, sieht es in den eigentlichen Distributionen meist etwas differenzierter aus. Unter Ubuntu z. B. existieren die Repositories Main, Universe, Restricted und Multiverse.

Das Main-Repository umfasst von Canonical unterstützte freie Software, die als grundlegend und essenziell für das System angesehen wird. Das Universe-Repository wird von der Community gepflegt und enthält ebenfalls freie Software, die von Nutzern beigetragen und verwaltet wird.

Im Restricted-Repository finden sich proprietäre Treiber für Geräte, die aus lizenzrechtlichen Gründen nicht im Main-Repository enthalten sind. Schließlich existiert noch das Multiverse-Repository, das Software beinhaltet, die durch Urheberrecht oder andere rechtliche Fragen eingeschränkt ist und deshalb spezielle Vereinbarungen für die Nutzung oder Verbreitung erfordert.

Daneben liegen für die unterschiedlichen Repositorys verschiedene Spiegelserver vor, welche die Pakete redundant und geografisch verteilt vorhalten.

Auch Abhängigkeiten werden von High-Level-Paketmanagern wesentlich sinnvoller behandelt. Während eine Paketinstallation per dpkg verlangt, dass alle Abhängigkeiten installiert sind, übernimmt apt diese Aufgabe automatisch. Hierbei werden die Abhängigkeiten in die korrekte Reihenfolge gebracht, bezogen und anschließend installiert.

Durch die zentralen Repositorys ist es über wenige Befehle möglich, den kompletten Softwarebestand zu aktualisieren. Auch der Wegfall von Abhängigkeiten wird bemerkt und so werden nicht mehr benötigte Pakete auf Wunsch automatisch deinstalliert.

Anatomie eines Paketmanagmentsystems

Einige Eigenschaften, welche ein Paket ausmachen, wurden bereits beschrieben. Trotzdem soll an dieser Stelle genauer auf die Anatomie eines Pakets und des Managementsystems dahinter eingegangen werden. Hierbei wird dpkg als Beispiel herangezogen.

Der Debian Package Manager ist dafür verantwortlich, ein Paket zu installieren und wieder zu deinstallieren. Hierzu wird die DEB-Datei, welche das Paket darstellt, im ersten Schritt entpackt und anschließend ein Pre-Install-Skript ausgeführt.

Nach dessen Ausführung werden die Komponenten des Paketes an die korrekten Stellen im Dateisystem kopiert und anschließend das Post-Install-Skript ausgeführt. Bei der Deinstallation läuft dieser Vorgang ähnlich ab. Auch hier werden wieder Pre– und Post-Remove-Skripte durchgeführt. Daneben verwaltet dpkg eine Datenbank der installierten Pakete.

Im Einzelnen besteht ein DEB-Paket aus dem sogenannten Debian-Binary. In dieser Datei ist die Version des Dateiformates hinterlegt. Dies sollte bei aktuellen Distributionen immer 2.0 sein. Trotz ihres Namens handelt es sich um eine gewöhnliche Textdatei.

Ein entpacktes DEB-Archiv mit dem control-Ordner

Anschließend folgen zwei Archive, eines für die Meta-Informationen und eines für die eigentlichen Daten. Bei den Archiven werden zwei unterschiedliche Archivierungsverfahren unterstützt. So kann im Falle des control-Archivs das Archiv als control.tar.gz oder control.tar.xz vorliegen.

Das control-Archiv enthält mehrere wichtige Dateien. Die erste Datei ist die Datei control. Diese enthält Informationen über das Paket wie Paketname, Version, Abhängigkeiten, Konflikte, Beschreibung und mehr.

Für das Paket nginx-common sieht diese Datei beispielhaft wie folgt aus:

Package: nginx-common
Source: nginx
Version: 1.24.0-2
Architecture: all
Maintainer: Debian Nginx Maintainers 
Installed-Size: 306
Depends: debconf (>= 0.5) | debconf-2.0, nginx (>= 1.24.0-2), nginx (<< 1.24.0-2.1~)
Suggests: fcgiwrap, nginx-doc, ssl-cert
Breaks: nginx (<< 1.22.1-8)
Replaces: nginx (<< 1.22.1-8)
Section: httpd
Priority: optional
Multi-Arch: foreign
Homepage: https://nginx.org
Description: small, powerful, scalable web/proxy server - common files
 Nginx ("engine X") is a high-performance web and reverse proxy server
 created by Igor Sysoev. It can be used both as a standalone web server
 and as a proxy to reduce the load on back-end HTTP or mail servers.
 .
 This package contains base configuration files used by all versions of
 nginx.

Daneben sind die entsprechenden Pre- und Postskripte enthalten (preinst, postinst, prerm, postrm). Diese Skripte werden verwendet, um spezielle Aufgaben auszuführen, die für das Paket notwendig sind, wie das Konfigurieren von Systemdiensten oder das Aktualisieren von Konfigurationsdateien.

Die Datei conffiles enthält eine Liste von Konfigurationsdateien, die vom Paketmanagementsystem während einer Aktualisierung behandelt werden, um benutzerdefinierte Änderungen zu erhalten.

Über die Datei md5sums, eine Liste von MD5-Prüfsummen für die Dateien, die im Paket enthalten sind, kann die Integrität dieser überprüft werden.

Der entpackte data-Ordner in einem DEB-Archiv

Die eigentlichen Daten des DEB-Archives finden sich im data-Archiv (data.tar.gz oder data.tar.xz). Dieses Archiv enthält die Dateien, die zum System hinzugefügt werden, wenn das Paket installiert wird. Die Dateien in diesem Archiv werden relativ zum Wurzelverzeichnis des Ziel-Dateisystems extrahiert.

Paketdatenbank

Neben den eigentlichen Paketen nimmt die Paketdatenbank einen großen Stellenwert ein. Die Paketdatenbank von Debian und darauf basierenden Distributionen wird von dpkg verwaltet und speichert Informationen über alle installierten, gelöschten oder sonst wie bekannten Pakete auf dem System. Die Datenbank befindet sich im Verzeichnis /var/lib/dpkg/ und besteht aus mehreren Dateien und Verzeichnissen, die verschiedene Aspekte der Paketverwaltung abdecken.

Die Datei /var/lib/dpkg/status enthält den aktuellen Status aller Pakete. Sie listet Pakete auf, die installiert sind, deren Installation erwartet wird, die zur Deinstallation oder vollständigen Entfernung markiert sind, und so weiter. Für jedes Paket enthält diese Datei Metadaten wie Version, Architektur, Abhängigkeiten, Beschreibung und vieles mehr.

Die Paketdatenbank des Debian Package Managers

Die Datei /var/lib/dpkg/available enthält Informationen über verfügbare Pakete, aus den Repositorys. Diese Datei wird z. B. durch den Befehl apt update aktualisiert.

Das Verzeichnis /var/lib/dpkg/info/ enthält spezifische Dateien für jedes Paket, wie Konfigurationsskripte. Diese Dateien werden von dpkg während der Installation und Deinstallation verwendet, um sicherzustellen, dass diese Prozesse korrekt durchgeführt werden.

Die Paketdatenbank wird von dpkg und anderen Frontends wie APT, Aptitude oder Synaptic verwendet, um Paketoperationen durchzuführen. Es ist wichtig, dass diese Datenbank konsistent und unbeschädigt bleibt, da Inkonsistenzen zu Problemen bei der Paketverwaltung führen können.

Die Konsistenz der Paketdatenbank in Debian-basierten Systemen wird durch eine Kombination aus Designentscheidungen, Dateisystemtransaktionen und Sperrmechanismen sichergestellt.

Welche Version darf es sein?

Eine Paketverwaltung im Distributionsumfeld, kann trotz ihrer Vorteile, einige Herausforderungen mit sich bringen. Je nach der Politik der gewählten Distribution kann es sein, dass nur bestimmte und unter Umständen veraltete Versionen gepflegt werden. Dies ist z. B. bei Debian Stable der Fall, während bei anderen Distributionen wie bei Arch Linux immer die neusten Anwendungen, dank des Rolling Releases-Prozesses, mitgeliefert werden.

Die Nutzung eines Paketmanagers kann dazu führen, dass Nutzer weniger Kontrolle über spezifische Konfigurationen der installierten Software haben, da viele Einstellungen bereits festgelegt wurden.

Die Sicherheit hängt zudem von der Vertrauenswürdigkeit der Softwarequellen, den sogenannten Repositorys, ab. Eine Kompromittierung eines Repositorys kann die Verbreitung schädlicher Software begünstigen. Trotz verschiedener Sicherheitsmaßnahmen kann ein solches Risiko nicht gänzlich ausgeschlossen werden.

Paketmanager je Betriebssystem

Neben der grauen Theorie werden Paketmanager natürlich auch genutzt. Hierfür stehen je nach Betriebssystem unterschiedlichste Paketmanager zur Verfügung, von deinen einige nachfolgend vorgestellt werden sollen.

Linux

Unter Linux existieren eine Vielzahl an Paketmanagern. Zu den häufigeren verwendeten gehört sicherlich dpkg mitsamt seiner Frontends, wie APT. Auf Debian basierende Distributionen wie Ubuntu nutzten dieses System ebenfalls.

Ein weiterer bekannter Paketmanager ist RPM, welcher unter anderem bei Red Hat Linux zum Tragen kommt. RPM steht hierbei für RPM Package Manager, welcher ursprünglich als Red Hat Package Manager bezeichnet wurde.

Im Laufe der Zeit wurde der RPM Package Manager weiterentwickelt und verbessert. Das RPM-Format selbst wurde standardisiert, und es wurden Werkzeuge wie YUM (Yellowdog Updater, Modified) und später DNF (Dandified Yum) entwickelt, die als Frontends für RPM dienen und zusätzliche Funktionen wie einfachere Abhängigkeitsauflösung und automatische Updates bieten.

Daneben existieren weitere Paketmanagementsysteme wie Pacman unter Arch Linux. Üblicherweise ist das Paketverwaltungssystem eines der Systeme, die näher betrachtet werden, wenn sich intensiver mit einer Distribution auseinandersetzt wird.

Neben diesen gewöhnlichen Paketmanagern gibt es auch neue Konzepte, wie Nix und NixOS, welche deklarative Ansätze für die Paketverwaltung nutzen.

Snap, Flatpak und Co.

In der Linux-Welt sind zusätzlich zu den Systempaketmanagern weitere Paketformate entstanden, die darauf abzielen, Softwarepakete unabhängiger von den einzelnen Distributionen zu gestalten.

Unter Ubuntu ist das Snap-Format stark vertreten, bei anderen Distributionen hingegen Flatpack. Snap und Flatpak sind moderne Paketmanagement- und Bereitstellungssysteme, die das Ziel haben, die Installation und Verwaltung von Software auf Linux-Systemen zu vereinfachen und zu vereinheitlichen. Sie ergänzen traditionelle Paketmanager wie APT und bieten einige Vorteile.

Snap ist ein Paketformat, das von Canonical entwickelt wurde. Snap-Pakete sind in sich geschlossene Softwarepakete, die alle notwendigen Abhängigkeiten enthalten, um auf einer Vielzahl von Linux-Distributionen zu laufen. Das Snap-System verwendet ein zentrales Repository namens Snap Store, in dem der Nutzer Software suchen und installieren kann.

Snaps sind in der Regel größer als traditionelle Pakete, da sie alle Abhängigkeiten enthalten, bieten dafür aber andere Vorteile. So laufen Snaps in einer Sandbox-Umgebung, die die Sicherheit erhöht, indem sie den Zugriff der Anwendung auf das System beschränkt.

Durch den Dienst snapd, werden Snaps automatisch aktualisiert, was die Wartung vereinfacht. Aus Entwicklersicht können Anwendungen leichter veröffentlicht und aktualisiert werden, da nicht diese nicht auf die Paketverwaltung der einzelnen Distributionen angewiesen sind.

Flatpak ist ein ähnliches System, entwickelt von der unabhängigen Community. Es zielt ebenfalls darauf ab, distributionsübergreifend Software bereitzustellen und verwendet für die Verteilung von Softwarepaketen sogenannte Remotes wie Flathub. Flatpaks können auf einer Vielzahl von Linux-Distributionen laufen. Ähnlich wie Snaps bieten Flatpaks eine Sandbox-Umgebung, die die Sicherheit verbessern soll.

Beide Systeme, Snap und Flatpak, tragen in der Theorie dazu bei, die Fragmentierung im Linux-Ökosystem zu verringern und die Softwareverteilung zu vereinfachen. Sie bieten eine Plattform für Entwickler, um ihre Anwendungen einem breiteren Publikum zur Verfügung zu stellen. Der Nutzer kann über diese Systeme Anwendungen unabhängig von der spezifischen Linux-Distribution installieren.

AppImage ist ein weiteres Format für portable Softwarepakete unter Linux. Im Gegensatz zu Snap und Flatpak wird bei AppImages keine Installation durchgeführt. Stattdessen sind AppImages eigenständige ausführbare Dateien, die alle Abhängigkeiten enthalten und direkt ausgeführt werden können.

macOS

Unter macOS existieren neben dem integrierten App Store, welcher 2011 eingeführt wurde, weitere Paketmanager, bei denen es sich um Community-Projekte handelt.

Der App Store unter macOS

Der App Store selbst ist im Gegensatz zu seinem iOS-Pendant nicht verpflichtend zu nutzen. Auch wenn unsignierte Software mittlerweile nur nach einigen Warnmeldungen gestartet werden kann.

Bei den Community-Projekten stechen die Werkzeuge MacPorts und Homebrew hervor. MacPorts, früher unter dem Namen DarwinPorts bekannt, ist seit 2002 verfügbar und liegt mittlerweile in Version 2.8.1 vor.

MacPorts ist darauf ausgelegt, für jeden Port alle Abhängigkeiten selbst aus dem Quelltext zu kompilieren und zu verwalten. Dies führt zu einer größeren Isolation und Konsistenz, kann aber auch die Nutzung von mehr Speicherplatz und längere Installationszeiten bedeuten.

Der Paketmanager Homebrew wurde 2009 von Max Howell entwickelt. Homebrew versucht, wo möglich, vorhandene Systembibliotheken zu nutzen und installiert nur Abhängigkeiten die darüber hinaus benötigt werden. Dies kann zu schnelleren Installationen führen, birgt aber auch das Risiko eines Konfliktes mit Systembibliotheken.

Homebrew wird oft als benutzerfreundlicher wahrgenommen, mit einfacheren Befehlen und einer einfacheren Installation. Daneben verfügt es über eine breite Unterstützung für Binärpakete, die auf eine schnelle Installation abzielen und das Softwareangebot erweitern.

Die Anwendung der jeweiligen Paketmanager bleibt hierbei dem Nutzer überlassen, je nach dem gewünschten Anwendungszweck. So benötigt MacPorts Administratorrechte, während Homebrew in den meisten Fällen ohne solche auskommt. Genutzt werden beide Paketmanager über das Terminal.

Windows

An Windows ist der Erfolg der Paketmanager ebenfalls nicht vorbeigegangen. So wurde schon seit Windows Vista die Applikation Pkgmgr.exe mitgeliefert. Dabei handelte es sich um einen Paketmanager zur Installation und Deinstallation von Paketen.

Allerdings war dieser Paketmanager nicht für den Nutzer des Systems gedacht. Stattdessen diente er dazu, Komponenten des Betriebssystems zu installieren. Später wurde dieses System insbesondere durch DISM (Deployment Image Servicing and Management) abgelöst.

Neben dem Microsoft Store, welcher als App Store fungiert, existieren auch für Windows eine Reihe von Community getriebenen Paketmanagern. Hier wären unter anderem Chocolatey und Scoop zu nennen. Microsoft hat mit dem Windows Package Manager (winget) ebenfalls einen solchen Paketmanager vorgestellt. Eine detaillierte Betrachtung dieser Paketmanager findet sich auf Golem.de.

Daneben existieren auch Client-Managment-Plattformen, wie ACMP, welche für die Nutzer die Softwareinstallation aus einem Katalog ermöglichen und meist im geschäftlichen Umfeld zu finden sind.

Mobile Systeme

Während Systeme wie die PDAs von Palm überwiegend von Hand mit Apps bestückt wurden, sah dies bei den großen mobilen Systemen der Neuzeit, namentlich Android und iOS anders aus. Hier gab es bereits zu Beginn entsprechende
App Stores.

Google Play

Unter Android war dies der Android Market, welcher schließlich in Google Play aufging, unter iOS der App Store, welcher mit der Version iOS 2 (iPhone OS 2.0) seinen ersten Auftritt hatte.

Software kann über diese App Stores installiert, aktualisiert und deinstalliert werden. Im Unterschied zu reinen Paketmanagement-Lösungen bieten diese App Stores zusätzliche Dienste. Sie wickeln unter anderem Zahlungen ab, was sowohl In-App-Käufe als auch Abonnements einschließt.

Im Android-Bereich existieren daneben weitere alternative App Stores, wie der F-Droid App Store, welcher auf freie Software spezialisiert ist. Unter iOS ist dies bislang nicht ohne Jailbreak möglich. Dies soll sich allerdings durch den Digital Markets Act in der EU ändern.

Auch andere mobile Ökosysteme nutzen ihre jeweiligen App Stores wie Amazon, Samsung und Huawei.

Fazit

Ian Murdock, einer der Mitbegründer des Debian-Projektes, nannte Paketmanager einmal den größten einzelnen Fortschritt, welchen Linux der Industrie bescherte.

Sie erleichtern die Handhabung von Abhängigkeiten und Kompatibilitätsproblemen, die sonst für den Nutzer eine Herausforderung darstellen könnten. Mit dieser Idee haben sie viele Domänen erobert.

So begegnet uns das Konzept der Paketierung immer wieder, z. B. bei Docker-Containern. Auch bei neuen Programmiersprachen, wie Rust, wird das Paketmanagement gleich mitgedacht.

Paketmanager nehmen eine wichtige Rolle ein, indem sie die Installation, Aktualisierung und Entfernung von Softwarepaketen auf effiziente und benutzerfreundliche Weise ermöglichen und uns so auch in Zukunft begleiten werden.

In Zukunft wird auch verstärkt der Fokus auf unveränderliche Systeme und containerisierte Anwendungen gerichtet sein. Dieser Ansatz hat in jüngster Zeit mit Technologien wie Podman und Co. den Weg zurück auf den Desktop gefunden und spiegelt die wachsende Präferenz für isolierte, konsistente und portable Anwendungsumgebungen wider.

Dieser Artikel erschien ursprünglich auf Golem.de und ist hier in einer alternativen Variante zu finden.

Selfhosting in fünfter Auflage erschienen

Vor einigen Tagen ist mein Buch Selfhosting: Server aufsetzen und betreiben in der fünften Auflage erschien. Die erste Auflage des Buches erschien im Jahr 2015. Im Gegensatz zu den Vorgängerausgaben, erscheint diese Ausgabe, neben der E-Book-Variante, auch gedruckt als Soft- und Hardcover-Ausgabe. Behandelt wird im Buch der Betrieb eines eigenen Servers mitsamt entsprechender Dienste unter der Nutzung der Linux-Distribution Ubuntu. Neben den bisherigen Inhalten wurde viele Kapitel um entsprechende Hintergründe erweitert.

Selfhosting

Nach einer kurzen Einleitung behandelt das Buch die Beschaffung eines Servers, die anschließende Installation und Grundeinrichtung. Dabei wird auch das Setup von verschlüsselten Servern behandelt. Nach der Vermittlung von Linux– und Netzwerk-Grundlagen, wird anschließend die Einrichtung unterschiedlichster Servertypen, wie Mail-, Game- oder Webserver behandelt. Neben diesen werden Dienste wie Git und XMPP besprochen. In weiteren Abschnitten des Buches wird auf Themen wie das Backup von Servern, die Sicherheit, Wartung und Verwaltung derselben eingegangen.

Die Hard- und Softcover-Ausgaben

Erhältlich ist das Buch als E-Book, sowie in einer Soft- und Hardcover-Variante. Es kann es unter anderem bei Amazon, Beam, Google Play, eBook.de und iTunes bezogen werden. Direkt bestellt werden kann das Buch über den Shop von Tredition.

DNS-Technologien im Überblick

Das altehrwürdige Domain Name System ist seit mittlerweile fast vierzig Jahren einer der Grundpfeiler des Internets. Daneben erblicken neue Technologien rund um das DNS das Licht der Welt und entsprechende Unterstützung zieht in die Betriebssysteme ein.

Einleitung

Damit Pakete für das Internetprotokoll in Version 4 und 6 durch das Internet versendet werden können, sind Endpunkte, wie Clients und Server, mit Adressen versehen.

Über diese Adressen können die Dienste eines Servers abgerufen werden, so z. B. der Aufruf einer Webseite. Während IPv4-Adressen wie 192.168.15.15 noch übersichtlich scheinen, sieht es bei IPv6-Adressen wie der Adresse 2001:0db8:3c4d:0015:0000:1507:1503:1a2b anders aus.

Menschen sind nicht sonderlich gut darin, sich Zahlen zu merken, sodass eine andere Adressierung für die entsprechenden Endpunkte geschaffen werden musste. Gelöst wurde das Problem durch das Domain Name System, welches gerne als Telefonbuch des Internets bezeichnet wird.

Damit können Domains wie example.org auf eine entsprechende IP-Adresse abgebildet werden. Durch dieses Mapping vereinfacht sich die Nutzung und Adressierung im Internet.

Hierarchie im System

Wird eine Domain wie example.org aufgerufen, so wird ein DNS-Server abgefragt, der einem daraufhin den Domainnamen zu einer IP-Adresse auflöst.

Das gesamte Domain Name System ist hierarchisch aufgebaut. Auf der obersten Ebene befinden sich die autoritativen Nameserver für die Root-Zone. Diese sind dreizehn an der Zahl und tragen die Namen A bis M. Sie liefern die entsprechende Root-Zone aus, bei welcher es sich um einen knapp 2 MB großen Datenblob handelt.

In diesem enthalten ist eine Liste der autoritativen Nameserver für jede Top-Level-Domain. Damit verweist die Root-Zone auf DNS-Server, welche für einzelne Top-Level-Domains wie .de, .org oder .net zuständig sind.

Die Hierarchie im Domain Name System

Die Nameserver für die einzelnen Top-Level-Domains verweisen für eine angefragte Domain wiederum auf autoritative Nameserver, welche für diese Domain zuständig sind. In der Theorie kann diese Hierarchie mit jeder Ebene einer Domain, wie z. B. Subdomains, fortgesetzt werden.

Autoritative und cachende Nameserver

Besagte autoritative Nameserver sind dafür verantwortlich, verbindliche Aussagen zu einer Zone, wie einer Domäne oder einer ganzen Top-Level-Domain zu treffen. Was der autoritative Nameserver mitteilt, ist die objektive Wahrheit im Domain Name System.

Da es aus Gesichtspunkten wie der Lastverteilung und der Antwortgeschwindigkeit eher unpraktikabel ist, alle Anfragen zu einer bestimmten Zone nur von den autoritativen Nameservern beantwortet zu lassen, existieren cachende Nameserver.

Diese Nameserver, stehen z. B. beim Internet Service Provider und beantworten die DNS-Anfragen der Kunden. Kann eine solche DNS-Anfrage nicht aus dem Cache beantwortet werden, so wird wiederum der autoritative Nameserver angefragt und das Ergebnis für weitere Anfragen im Cache gehalten.

Nach Ablauf der Time to Live (TTL), welche in der Zone definiert ist, wird der Cache invalidiert und bei der nächsten Anfrage wieder der autoritative Nameserver befragt.

Zonen im Detail

In einer Zone können unterschiedlichste sogenannte Resource Records, kurz Records angelegt werden. Eine Zone, welche die entsprechende Konfiguration enthält, könnte wie folgt aussehen:

$ORIGIN example.org.
$TTL 3600
; SOA Records
@		IN	SOA	dns.example.org. 2022061900 86400 10800 3600000 3600
; NS Records
@		IN	NS	ns-1.example.org.
@		IN	NS	ns-2.example.org.
@		IN	NS	ns-3.example.org.
; MX Records
@		IN	MX	10 mail.example.org.
; A Records
@		IN	A	10.1.1.1
; AAAA Records
@		IN	AAAA	2001:db8:123:4567::1
; CNAME Records
api		IN	CNAME	www
www		IN	CNAME	example.org.

In der Zonen-Datei sind eine Reihe von Resource Record-Typen definiert, welche bestimmten Zwecken dienen. Von diesen Typen ist eine größere Anzahl definiert, von denen hier ein auszugsweiser Überblick gegeben werden soll.

A

Der A-Record definiert die IPv4-Adresse des Hosts. Mit diesem wird der Hostname schlussendlich der entsprechenden IPv4-Adresse zugeordnet.

AAAA

Wie beim A-Record ordnet auch der AAAA-Record dem Host eine IP-Adresse zu. In diesem Fall wird allerdings eine IPv6-Adresse zugeordnet.

CNAME

Bei CNAME handelt es sich um die Abkürzung für Canonical Name record. Mit diesem Record kann einer Domain ein weiterer Name zugeordnet werden. Dies kann genutzt werden, um Subdomains wie api.example.org anzulegen.

In einer beispielhaften Konfiguration würde dies dann wie folgt aussehen:

$ORIGIN example.org.
info    IN	CNAME	www
www		IN	A	192.168.1.1
www		IN	AAAA	2a01:4f8:262:5103::1

Hier wird die Subdomain info.example.org per CNAME auf die Subdomain www.example.org verwiesen, welche wiederum per A- und AAAA-Record auf die entsprechenden IP-Adressen des Hosts verweist.

MX

Der MX-Record ist ein wichtiger Record-Typ im Domain Name System, weil er dafür sorgt, dass E-Mails den entsprechenden Empfänger erreichen. Dazu definiert er den entsprechenden Mailserver, welcher für eine Domain zuständig ist:

; MX Records
@		IN	MX	10 mail.example.org.

Damit kann per DNS ermittelt werden, wie der Mailserver erreichbar ist und die entsprechende E-Mail zugestellt werden.

NS

Der NS-Record bzw. die NS-Records definieren die für die Domain zuständigen Nameserver. Bei einem bei Hetzner gehosteten Server, könnte das Ganze wie folgt aussehen:

; NS Records
@		IN	NS	helium.ns.hetzner.de.
@		IN	NS	hydrogen.ns.hetzner.com.
@		IN	NS	oxygen.ns.hetzner.com.

Die dort angegebenen Server sind die autoritativen Nameserver, da die entsprechenden Auskünfte, die diese Server erteilen, für die konfigurierte Domain verbindlich sind.

PTR

Ein PTR-Record, kurz für Pointer record, dient dazu, ein Reverse DNS Lookup zu ermöglichen. Das bedeutet, dass zu einer IP-Adresse der entsprechende DNS-Name ermittelt wird.

Wichtig ist diese Art der Konfiguration unter anderem bei der Bereitstellung von Mailservern.

SOA

SOA-Records, welche ein Kürzel für Start Of Authority darstellen, dienen der Darstellung bestimmter Informationen wie der primären Nameserver oder der Bereitstellung von Informationen, wie der TTL, für andere DNS-Server.

; SOA Records
@		IN	SOA	hydrogen.ns.hetzner.com. dns.hetzner.com. 2022121602 86400 10800 3600000 3600

TXT

Der TXT-Record ist ein relativ universeller Record im Domain Name System, mit welchem maschinenlesbare Daten im DNS hinterlegt werden können:

; TXT Records
@		IN	TXT	"v=spf1 redirect=example.org"

Genutzt wird diese Möglichkeit für unterschiedliche Techniken, wie im E-Mail-System mit DMARC oder dem Sender Policy Framework (SPF).

Probleme im Domain Name System

Das Domain Name System funktioniert in den Grundzügen, so wie es seit 1983 definiert wurde. Allerdings wirft diese Architektur auch einige Probleme auf.

In der klassischen DNS-Variante über UDP oder TCP, findet die komplette Kommunikation unverschlüsselt statt und stellt somit auch aus Sicht des Datenschutzes bzw. der Privatsphäre ein Problem dar.

Daneben sind die DNS-Responses nicht vor Änderungen geschützt und können somit ohne Wissen des Empfängers manipuliert werden.

Auch DDoS-Attacken in Form einer DNS Amplification Attack lassen sich bedingt durch die Gegebenheiten im Domain Name System durchführen. Hierbei wird die Zieladresse mit Datenverkehr von DNS-Servern belastet. Dies funktioniert, da der Angreifer eine DNS-Anfrage mit einer gefälschten IP-Adresse stellt und die Antwort somit beim eigentlichen Ziel der Attacke aufläuft. Der Angreifer benötigt in einem solchen Fall wenig Bandbreite, da die Antwort des DNS-Servers meist wesentlich größer ausfällt, als die Anfrage.

Ein weiteres Problem sind sogenannte Broken Resolvers. Dies ist insbesondere bei einigen Internet Service Providern der Fall, bei denen Dinge wie die TTL, also die Gültigkeit einer DNS-Antwort nicht berücksichtigt werden. Daneben existieren auch solche Resolver, die bei nicht vorhanden Domains nicht mit NXDOMAIN antworten, sondern stattdessen auf eine eigene Webseite umleiten.

Dieses Problem kann schon mit dem ursprünglichen Domain Name System verhindert, werden, indem alternative DNS-Server genutzt werden. Grundsätzlich erschweren solche Broken Resolvers die Fehlerfindung und beeinflussen die Funktionalität des Domain Name System.

Eine Fehlermeldung in Chrome, welche auf Probleme mit der DNS-Konfiguration hinweist

Interessant ist hier die Unterstützung durch Browser, wie Chrome, welcher bei Inkonsistenzen mit dem DNS-Server entsprechende Hinweise in Form einer spezifischen Fehlermeldung gibt.

Verbesserungen am System

Die Schwächen des Domain Name Systems sind nicht unberücksichtigt geblieben und so gab es im Laufe der Zeit immer wieder Verbesserungen, um das eine oder andere Problem zu beseitigen und das Domain Name System zu verbessern.

Dies fing schon in der Frühzeit des DNS an, als neben der ursprünglichen Möglichkeit per UDP Anfragen zu stellen, dies auch per TCP abgewickelt werden sollte. Hintergrund war es hier unter anderem DNS-Responses, welche größer als 512 Byte sind, versenden zu können.

Daneben wurde zur Erweiterung der DNS-Responses über UDP der Extension Mechanismus for DNS, kurz EDNS, definiert. Über diesen Mechanismus ist es möglich, mehr als 512 Byte per UDP zu übertragen. Genutzt wird dies unter anderem bei DNSSEC.

Bei der gewöhnlichen Nutzung wird in den meisten Fällen, aufgrund des geringeren Overheads, UDP genutzt. Nur in Fällen, in denen z. B. größere Datenmengen im Spiel sind, wird TCP genutzt.

TSIG und DNSSEC

Eine Sicherheitstechnologie in Bezug auf DNS ist TSIG, welches mit der RFC 2845 spezifiziert wurde. Das Kürzel steht für Transaction Signatures und ist ein Verfahren zur Absicherung von DNS-Updates z. B. bei dynamischem DNS.

Eine weitere Erweiterung des DNS sind die Domain Name System Security Extensions kurz DNSSEC. Mittels DNSSEC soll die Authentizität und Integrität von DNS-Daten gewährleistet werden.

Das bedeutet bei DNSSEC, dass die Übertragung selbst nicht verschlüsselt ist, sondern nur sichergestellt wird, dass die enthaltenden Daten korrekt und unverändert sind. Die Verbreitung von DNSSEC hat dabei in den vergangenen Jahren zugenommen.

Technologien für neue Anforderungen

Während Technologien wie DNSSEC und TSIG, bestimmte Anwendungszwecke im Auge haben, ist das Bewusstsein für Datenschutz und Privatsphäre im Laufe der letzten Jahre und Jahrzehnte gewachsen, sodass Lösungen entwickelt wurden, welche unverschlüsseltes DNS ersetzen oder ergänzen sollen.

Die neu entwickelten Protokolle und Technologien, welche in den vergangenen Jahren entwickelt wurden, hören auf so illustre Kürzel wie DoT, DoH oder DoQ.

Die unterschiedlichen DNS-Varianten im Laufe der Zeit

Interessant ist hier ein kurzer Rückblick auf die Geschichte des DNS-Protokolls. Als dieses ursprünglich zum Einsatz kam, setzte das Protokoll auf UDP auf, sodass die erste DNS-Version als DNS over UDP bezeichnet werden kann.

Mit der RFC 1123 aus dem Jahre 1989 wurde schließlich begonnen TCP für DNS-Anfragen zu nutzen, sodass DNS over TCP geboren war. Sowohl die UDP als auch die TCP Variante nutzen den Port 53.

DNS over TLS

DNS over TLS, kurz DoT, wurde im Mai 2016 im Rahmen der RFC 7858 standardisiert und wird genutzt, um DNS-Abfragen mittels TLS zu verschlüsseln. Es handelt sich hierbei nur um eine Transport- und um keine Ende-zu-Ende-Verschlüsselung.

DNS über TLS

Bei DoT wird zu dem DNS-Server eine Verbindung über TCP aufgebaut und diese mittels TLS abgesichert. Bedingt durch die Transportverschlüsselung können die DNS-Einträge nicht mehr zwischen den Knoten manipuliert werden. Der standardmäßig vorgesehene Port für DoT ist 853.

Wie auch bei DNS over HTTPS, werden bei dieser Variante DNS-Verstärkungsangriffe weitestgehend unterbunden.

Gegenüber unverschlüsseltem DNS erzeugt die Verschlüsslung per TLS einen gewissen Overhead, welcher sich auf die Geschwindigkeit der DNS-Anfrage auswirkt.

Im Gegensatz zu DNS über HTTPS soll diese Variante in der Praxis schneller sein. Allerdings gibt es je nach Implementierung unter Umständen Probleme, die meist von einem nicht korrekt implementierten Standard herrühren.

Bedingt durch den fest definierten Standardport für DoT (853), lässt sich dieses Protokoll relativ einfach blockieren. In einem solchen Fall kann auf andere DNS-Protokolle geschwenkt oder alternativ auf unverschlüsseltes DNS gesetzt werden.

DNS over HTTPS

Eine weitere Variante, welche ähnlich dem DNS over TLS funktioniert, ist DNS over HTTPS. Dieses wurde in der RFC 8484 standardisiert.

DNS über HTTPS

DoH läuft über den gleichen Port, wie gewöhnliches HTTPS, den Port 443. Damit kann von Außen keine Unterscheidung getroffen werden, ob es sich um DNS-Anfragen oder normalen HTTPS-Datenverkehr handeln.

Der Grund hierfür ist darin zu suchen, dass der Datenverkehr bzw. die Informationen der DNS-Abfrage über das Hypertext Transfer Protocol gesendet werden.

Damit wird eine Blockierung entsprechender DNS-Abfragen über dieses Verfahren erschwert. Allerdings leidet auch hier wieder die Performanz im Vergleich zu gewöhnlichem unverschlüsselten DNS.

Eine Spielart von DNS over HTTPS ist das relativ neue DNS-over-HTTP/3 kurz DoH3, welches wie HTTP/3 als Transportprotokoll QUIC anstatt von TCP nutzt. Dies darf allerdings nicht mit DNS over QUIC verwechselt werden.

DNS over QUIC

Zu den neueren Ideen bzw. Technologien bei der DNS-Abfrage gehört DNS over QUIC. Ziel von DoQ ist es, die Latenzen zu verringern, bei gleichzeitiger Nutzung einer verschlüsselten Verbindung.

DNS über QUIC

Definiert ist DoQ in der RFC 9250. Grundlage für das Protokoll ist QUIC, welches als Transportschicht TCP ersetzt und in dieser Form auch bei HTTP/3 genutzt wird.

Ziel von DoQ ist, dass dieses Protokoll auch für autoritative Nameserver verwendet werden kann. Damit soll eine möglichst breite Anzahl an Nutzungsmöglichkeiten im Zusammenhang, mit dem Domain Name System abgebildet werden können.

Da DoQ über den zugewiesenen Port 853 läuft, ist auch hier technisch gesehen eine einfache Blockierung möglich. Allerdings definiert die RFC hier im Abschnitt Port Selection:

In the stub to recursive scenario, the use of port 443 as a mutually agreed alternative port can be operationally beneficial, since port 443 is used by many services using QUIC and HTTP-3 and is thus less likely to be blocked than other ports

Unterstützung auf Serverseite

Damit DNS-Dienste, über welche Protokolle auch immer, im Internet genutzt werden können, muss die entsprechende Server-Software die gewünschten Protokolle unterstützen.

Neben BIND, dem Platzhirsch unter den DNS-Server, existieren noch weitere DNS-Server von denen bezüglich ihrer Fähigkeiten noch Unbound und der Windows Server kurz beleuchtet werden sollen.

DNS over TLS DNS over HTTPS DNS over QUIC
BIND ab Version 9.17 ab Version 9.17
Unbound ab Version 1.7.3 ab Version 1.12.0
Windows Server (DNS) ab Windows Server 2022

Bei BIND zogen mit der Version 9.17, welche im Jahr 2020 erschien, der Support für DoT und DoH (in einer experimentellen Version) ein. Eine Unterstützung für DNS over QUIC, steht im Moment noch aus.

Unbound liefert seit der im Juni 2018 erschienen Version 1.7.3 eine Unterstützung für DNS over TLS aus. Mit der im Oktober 2020 erschienen Version 1.12.0 wurde die Unterstützung für DNS over HTTPS implementiert. An der Umsetzung von DNS over QUIC in Unbound wird im Moment noch gearbeitet.

Ab dem Windows Server 2022 wird DNS over HTTPS offiziell unterstützt. Bei DNS over TLS und DNS over QUIC ist bisher keine Unterstützung im Windows Server vorhanden.

Linux

Neben der Unterstützung auf Serverseite ist auch die Unterstützung auf Client-Seite, in Form von Betriebssystemen auf dem Desktop, als auch im Bereich der mobilen Betriebssysteme wichtig.

In den meisten Linux-Distributionen, welche Systemd nutzen, kann dies über systemd-resolved erledigt werden. Dieser unterstützt ab der Version 239 opportunistisches DNS over TLS und ab der Version 243 striktes DNS over TLS.

Hier kann z. B. unter Ubuntu in der Konsole die entsprechende Konfigurationsdatei editiert werden:

nano /etc/systemd/resolved.conf

Dort sollte die Einstellung:

DNSOverTLS=yes

hinzugefügt werden. Anschließend können über den normalen Netzwerkdialog, DoT-fähige DNS-Server eingetragen werden:

9.9.9.9, 149.112.112.112

In diesem Fall sind es die DNS-Server von Quad9. Anschließend laufen die DNS-Abfragen per DoT über die gewählten DNS-Server.

macOS

Seit macOS 11, welches mit dem Namen Big Sur auf den Markt kam, unterstützt macOS neben DNS over TLS auch DNS over HTTPS.

Aktiviert werden können die gewünschten Einstellungen über Konfigurationsprofile. Dazu muss ein entsprechendes Profil heruntergeladen und anschließend installiert werden.

Das Profil unter macOS

Die Konfigurationsprofile befinden sich in den Systemeinstellungen unter macOS. Nach der Aktivierung kann über das Terminal überprüft werden, ob die entsprechenden Einstellungen aktiv sind:

sudo tcpdump -i any "port 853 and host 9.9.9.9 or host 149.112.112.112"

Bei der Nutzung von DoH sollte der Port im Befehl auf 443 geändert werden. Nachdem der Befehl abgesetzt wurde, sollte Netzwerkverkehr zu dem Quad9-DNS-Server im Dump auftauchen.

Windows

Unter Windows 10 wird, seit dem Build 19628, DNS over HTTPS unterstützt. Dazu muss in der Registry der Pfad:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Dnscache\Parameters

aufgerufen werden und dort ein Parameter vom Typ DWORD erstellt werden. Dieser trägt den Namen EnableAutoDoh sowie den Wert 2. Anschließend sollte ein Neustart des Rechners durchgeführt werden.

Die Einstellungen im Registrierungs-Editor

Nun können in den Einstellungen für den jeweiligen Netzwerkadapter die passenden DNS-Server mit einer entsprechenden Unterstützung für DoH eingestellt werden:

9.9.9.9, 149.112.112.112

Unter Windows 11 können die Einstellungen für DoH bequem über die Netzwerkeinstellungen eingestellt werden, nachdem dort die passenden DNS-Server hinterlegt sind, kann dort unter DNS over HTTPS das Feature aktiviert werden.

Neben DoH unterstützt Windows 11 auch DNS over TLS. Dazu werden in den Netzwerkeinstellungen die entsprechenden DNS-Server hinterlegt und das DNS over HTTPS-Feature deaktiviert.

Nun muss die Kommandozeile geöffnet werden und dort müssen die Befehle:

netsh dns add global dot=yes​
netsh dns add encryption server=9.9.9.9 dothost=: autoupgrade=yes
netsh dns add encryption server=149.112.112.112 dothost=: autoupgrade=yes

eingegeben werden. Das Kommando:

netsh dns add encryption

muss hierbei für jeden DNS-Server für die IPv4- und IPv6-Adresse wiederholt werden. Abgeschlossen wird das Prozedere mittels:

ipconfig /flushdns
netsh dns show global

Der letztere Befehl zeigt an, ob die Einstellungen für DNS over TLS aktiviert wurden. DNS over QUIC wird unter Windows vom System selbst bisher noch nicht unterstützt.

Android

Während seit Android 9 (Pie) DNS over TLS bereits verfügbar ist, ist DNS over HTTPS ab Android 11 enthalten und teilweise auch auf einigen Geräten mit Android 10 verfügbar.

Die teilweise Verfügbarkeit unter Android 10 erklärt sich dadurch, dass das entsprechende DNS Resolver Modul unter Android 10 noch optional, aber unter Android 11 verpflichtend zum System dazu gehört. Installiert werden diese Änderungen über ein Google Play-Systemupdate.

In den Einstellungen kann DoT bzw. DoH aktiviert werden

Zur Aktivierung unter Android genügt es in den Systemeinstellungen, die Netzwerkeinstellungen aufzurufen und dort im Punkt Privates DNS, die entsprechenden DNS-Server zu hinterlegen. Hierbei wird, je nach Android-Version, DNS over HTTPS (in der Variante DoH3) gegenüber DNS over TLS bevorzugt, zumindest bei den dem System bekannten DNS-Servern.

iOS

Seit iOS 14, also knapp 2 Jahre später als unter Android, zog in iOS die Unterstützung für DNS over TLS ein. Ebenfalls ab iOS 14 wird DNS over HTTPS unterstützt.

Wie unter macOS, kann die Einstellung über entsprechende Konfigurationsprofile vorgenommen werden. Dazu muss ein Profil auf dem iOS-Gerät heruntergeladen und installiert werden.

Die Installation des Profils erfolgt über die Einstellungen unter iOS

Nachdem das Profil bestätigt und installiert worden ist, wird der DNS-Server in der im Profil hinterlegten Konfiguration genutzt.

Unter iOS existiert die Besonderheit, dass DNS-Abfragen für den Appstore und die Terminalbefehle dig und nslookup per Design nicht über die im Profil hinterlegten DNS-Server abgefragt werden.

Das Profil kommt nicht immer zur Anwendung

Auch gelten die Einstellungen nicht, wenn z. B. iCloud Privat Relay oder eine VPN-Verbindung aktiv sind.

Browser

Neben der betriebssystemseitigen Unterstützung liefern auch die meisten Browser mittlerweile eine Unterstützung für DNS over HTTPS aus. Diese Unterstützung ist unabhängig vom darunterliegenden Betriebssystem.

Die Einstellungen für DNS over HTTPS im Firefox

Im Firefox kann DNS over HTTPS in den Einstellungen unter Allgemein und dort in den Verbindungs-Einstellungen aktiviert werden. Dort kann dann der Punkt DNS über HTTPS aktiviert mitsamt eines Servers ausgewählt werden.

Die Einstellungen zu DoH unter Chrome

Unter Chrome kann DoH über die Einstellungen unter dem Punkt Datenschutz und Sicherheit aktiviert werden. Dort findet sich unter dem Unterpunkt Sicherheit der Punkt Sicheres DNS verwenden.

Router

Auch Router bieten in vielen Fällen Funktionalitäten zur besseren Absicherung von DNS-Abfragen.

So können in der FRITZ!Box entsprechende DNS-Server, welche DoT unterstützen hinterlegt werden. Auf Wunsch kann die FRITZ!Box auch einen Fallback auf unverschlüsseltes DNS durchführen, falls die entsprechenden DoT-Server nicht erreicht werden können. Dies kann zum Beispiel durch entsprechende Firewalls oder beim technischen Ausfall der Server passieren.

Andere Verfahren

Neben den oben beschriebenen Varianten existieren noch weitere DNS-Varianten wie Oblivious DNS bzw. Oblivious DoH, DNS over TOR und DNSCrypt, welche allerdings im weiträumigen Praxiseinsatz eher seltener zu finden sind.

Nachteile der neuen Lösungen

Bei den neuen Lösungen, wie DoT, DoH und DNS over QUIC, existieren eine Reihe von Problemen bzw. Kritikpunkten.

Viele beziehen sich dabei auf gewünschte Eigenschaften der Verfahren, wie die Verschlüsselung, welche es unter anderem erschwert, den DNS-Verkehr zu überwachen. Genutzt wird eine solche Überwachung z. B. in Kinderschutzsoftware, oder im geschäftlichen Umfeld, um den Netzwerkverkehr zu überwachen und entsprechende Policen durchzusetzen.

Je nach Lösung wird dann versucht, die neueren Verfahren zu deaktivieren bzw. dessen Nutzung nicht zuzulassen oder aber eigene Server für die entsprechenden Protokolle zu betreiben, welche wiederum die entsprechen Sperrmöglichkeiten anbieten.

Auch sind die, bei den Verfahren wie DoT oder DoH genutzten, meist zentralen DNS-Server von Google, Cloudflare oder Quad9 ein Problem, da sich dort ein Großteil des DNS-Verkehrs sammelt und dies Begehrlichkeiten wecken oder der Profilbildung dienen kann.

Daneben sollte beachtet werden, dass je nach Implementation bzw. Betriebssystem die Nutzung der verschlüsselten DNS-Varianten nicht immer garantiert ist. Sei es durch ungewollte Downgrades auf unverschlüsseltes DNS oder aber Applikationen wie der Appstore unter iOS, welcher von den DNS-Einstellungen des Systems unabhängig funktioniert. Daneben gibt es in bestimmten Versionen von Android den Fall, dass die Private-DNS-Einstellungen nach dem Aufwachen des Gerätes erst wieder nach einigen Sekunden angewendet werden.

Fazit

DNS-Abfragen müssen heute nicht mehr unverschlüsselt erfolgen, da es eine Reihe von neuen Ideen und Transportprotokollen gibt, welche neben der jeweiligen Vorteile teilweise auch spezifische Nachteile haben.

Mittlerweile findet sich für die Verfahren DNS over TLS und DNS over HTTPS eine breitere Unterstützung in den Betriebssystemen. Dort, wo diese noch nicht verfügbar ist, kann auf DNS-Proxies oder im Spezialfall Browser auf dessen Möglichkeiten zurückgegriffen werden.

DNS over TLS DNS over HTTPS DNS over QUIC
Linux über systemd-resolved (ab Version 239 bzw. 243)
macOS ab macOS 11 (Big Sur) ab macOS 11 (Big Sur)
Windows ab Windows 11 (Build 25158) ab Windows 10 (Build 19628), Windows 11
Android ab Android 9 (Pie) ab Android 11
iOS ab iOS 14 ab iOS 14

Neben der gewöhnlichen DNS Auflösung haben aktuell vorwiegend die Technologien DoT und DoH eine größere Verbreitung erlangt. Spannend wird in Zukunft auch die Entwicklung von DoQ, welches zumindest das Potenzial hat, bestehende Technologien rundum DNS-Abfragen abzulösen.

Allerdings stellt sich bei vielen dieser Protokolle die Frage, welchen DNS-Servern vertraut werden soll, denn das bestehende DNS-System ist ein dezentrales System ohne übermächtige Gatekeeper, während bei Diensten wie DoT und DoH eine Zentralisierung zu beobachten ist.

Dieser Artikel erschien ursprünglich auf Golem.de und ist hier in einer alternativen Variante zu finden.

Ubuntu Pro unter Ubuntu aktivieren

Neben normalen Updates, stellt Canonical, die Firma hinter Ubuntu, mittlerweile mit Ubuntu Pro einen kommerziellen Support für die Linux-Distribution zur Verfügung. Im Gegensatz nur normalen LTS-Version, werden hier zehn Jahre Support, anstatt der fünf Jahre Support angeboten. Daneben erstreckt sich der Support auch auf die Software des Ubuntu Universe-Repositorys.

In der normalen LTS-Version erhalten ausschließlich Pakete aus dem Main- und Restricted-Repository entsprechende Updates. Auch beim Update wird auf solche Pakete hingewiesen:

Building dependency tree... Done
Reading state information... Done
Calculating upgrade... Done
The following security updates require Ubuntu Pro with 'esm-apps' enabled:
  libjs-jquery-ui libopenexr25 libmagickcore-6.q16-6-extra
  libmagickwand-6.q16-6 libmagickcore-6.q16-6 imagemagick-6-common
Learn more about Ubuntu Pro at https://ubuntu.com/pro
0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

Wie auch beim Livepatching, kann Ubuntu Pro für den persönlichen Gebrauch, z.B. bei einem eigenen privaten Server, kostenlos genutzt werden. Dazu muss dieses, nach dem Setzen des Tokens, nur aktiviert werden:

pro enable esm-apps

Anschließend wird überprüft, ob der Ubuntu Pro-Support aktiviert werden kann:

One moment, checking your subscription first
Service esm-apps is recommended by default. Run: sudo pro enable esm-apps
Updating package lists
Ubuntu Pro: ESM Apps enabled

Ist diese Operation erfolgreich, werden die Pakete aus dem Ubuntu Pro-Support mit installiert und aktualisiert, sowie die verlängerte Supportdauer aktiviert.

Zurückbehaltene Pakete unter Ubuntu aktualisieren

Unter Umständen kann es vorkommen, das bei einer Paketaktualisierung mittels apt folgende Meldung erscheint:

The following packages have been kept back:
grub-efi-amd64 grub-efi-amd64-bin grub-efi-amd64-signed gzip php8.1-bcmath php8.1-cli php8.1-common php8.1-curl php8.1-fpm php8.1-gd php8.1-gmp php8.1-imap php8.1-intl php8.1-mbstring php8.1-mysql php8.1-opcache php8.1-phpdbg php8.1-readline php8.1-sqlite3 php8.1-xml php8.1-zip
0 upgraded, 0 newly installed, 0 to remove and 21 not upgraded.

Grund für diese Meldung kann unter anderem sein, das in der Abhängigkeitskette für eines der Pakete ein neues Paket dazugekommen ist. Daneben werden Pakete in der gleichen Version im Normalfall nicht noch einmal aktualisiert. Soll ein solches zurückgehaltenes Paket trotzdem installiert bzw. aktualisiert werden, so kann hierfür folgender Befehl genutzt werden:

apt install --only-upgrade php8.1-zip

Anschließend wird das Paket aktualisiert. Allerdings sollte diese Option mit Bedacht gewählt werden, da es unter Umständen zu Änderungen kommen kann, welche das System bzw. Teile davon in einem nicht funktionsfähigen Zustand zurücklassen, sodass anschließend nachkonfiguriert werden muss.