KI-Werkzeuge in der Softwareentwicklung

In der Softwareentwicklung existierten schon immer Werkzeuge und Vereinfachungen wie Autocompletion oder Syntax-Highlighting, die den Entwicklungsprozess effizienter und weniger fehleranfällig machen sollten. Diese Werkzeuge haben es Entwicklern ermöglicht, sich stärker auf die Logik und Funktionalität ihres Quellcodes zu konzentrieren, anstatt sich mit den Details der Syntax oder der Strukturierung von Quellcode herumzuschlagen.

In den vergangenen Jahren hat sich die Landschaft der Softwareentwicklung weiterentwickelt und neue Technologien und Methoden haben Einzug gehalten. Beispielsweise haben Versionskontrollsysteme wie Git die Zusammenarbeit in Teams wesentlich verbessert und Continuous-Integration-/Continuous-Deployment-Pipelines ermöglichen es, Änderungen effizienter in Produktionsumgebungen zu bringen.

KI-Werkzeuge sollen die Entwicklungsarbeit vereinfachen

Aktuell finden immer mehr Werkzeuge, die mit maschinellem Lernen oder großen Sprachmodellen (Large Language Models) arbeiten, ihren Weg in die Praxis. Assistenten wie GitHub Copilot oder Tabnine nutzen hierbei große Mengen an Trainingsdaten, um Entwicklern kontextbezogene Vorschläge anzubieten, die weit über einfache Autocompletion hinausgehen. So können komplexere Code-Snippets vorgeschlagen oder ganze Methoden und Funktionen auf Basis kurzer Beschreibungen generiert werden.

Im Idealfall soll dies die Produktivität erhöhen, auch wenn das letzte Wort hierbei noch nicht gesprochen ist. Doch welche Werkzeuge existieren? Im Rahmen des Artikels soll ein Blick auf spezialisiertere Lösungen zur Entwicklung abseits von ChatGPT und Co. geworfen werden.

Arten von Werkzeugen

Auf dem Markt der KI-Werkzeuge zur Softwareentwicklung existieren Werkzeuge unterschiedlicher Couleur. Neben Integrationen für eine Anzahl von IDEs, existieren Standalone-Tools und auch webbasierte Tools. Viele KI-Werkzeuge sind als Plugins oder Erweiterungen für IDEs wie Visual Studio Code oder IntelliJ IDEA verfügbar. Diese Integrationen ermöglichen es, KI-gestützte Funktionen direkt in der gewohnten Entwicklungsumgebung zu nutzen, was den Arbeitsablauf verbessert.

Einige dieser Werkzeuge bieten spezialisierte Funktionen, die auf bestimmte Aspekte der Softwareentwicklung abzielen, wie Code-Generierung, Fehlererkennung, Optimierung, Review oder Testautomatisierung.

Code-Assistenten

Einer der häufigsten neuen Werkzeug-Typen sind Code-Assistenten, welche es ermöglichen Quellcode zu generieren und diese Fähigkeit in einer Entwicklungsumgebung einzusetzen. Daneben können Fragen zum Quellcode gestellt, Dokumentationen erzeugt, oder Vorschläge für ein Refactoring erzeugt werden.

Bei diesen Code-Assistenten finden sich etliche Schwergewichte der IT, wie Amazon oder Microsoft wieder.

Amazon Q

Als Antwort auf GitHub Copilot stellte Amazon CodeWhisperer vor. Mittlerweile ist dieses Werkzeug in Amazon Q aufgegangen.

Für Entwickler dürfte das Teilprodukt Amazon Q Developer interessant sein. Für dieses sind unter anderem Integrationen für die JetBrains IDEs, VS-Code und Visual Studio verfügbar. Auch eine Version für die Kommandozeile wird geboten.

Amazon Q in einer Jetbrains IDE

Für den Assistenten wird eine AWS Builder ID benötigt. Im begrenztem Rahmen kann der Assistent, damit kostenlos ausprobiert werden.

Sinnvolle Ergebnisse liefert der Assistenz nur bei Anfragen in englischer Sprache. Interessant ist die Möglichkeit, Quelltext zu generieren, der über mehrere Dateien reicht. Hier haben andere Assistenten meist ihre Probleme und erzeugen nur Quellcode an einem Stück.

Gesteuert wird der Assistent über Befehle wie /dev mit einem darauffolgenden Prompt. Angeboten wird neben der kostenlosen Variante, ein Business Lite und ein Business Pro Abonnement.

Insgesamt fühlt sich Amazon Q als generisches KI-Werkzeug zur Entwicklung unzureichend an, allerdings könnte es anders aussehen, wenn eine engere Verzahnung mit AWS und die Nutzung eigener Geschäftsdaten gewünscht wird.

Codeium

Codeium ist ebenfalls ein Code-Assistent, welcher sich in unterschiedlichste IDEs integriert.

Codeium unterstützt eine Reihe von IDEs

Das Plugin verfügt über eine Chat-Funktionalität, welche es ermöglicht Anforderungen bzw. Prompts zu definieren. Negativ fällt auf, dass hier die aktuell genutzte Programmiersprache nicht automatisch erkannt wird, sondern explizit angegeben werden muss.

Auch das Antworten auf bereits erzeugte Nachrichten muss separat erledigt werden. Wird stattdessen direkt im Chatfenster geantwortet, wird eine neue unabhängige Konversation gestartet. Soll auf einen vorherigen Chat Bezug genommen werden, so muss der Continue this chat-Button genutzt werden.

Die Chat-Funktionalität nutzt die falsche Programmiersprache

Interessanter ist die Möglichkeit, relativ unkompliziert Unit-Tests für ausgewählte Methoden zu generieren. Hierfür wird eine Methode ausgewählt und entsprechende Testfälle werden ermittelt und anschließend in Code umgesetzt.

Codium erzeugt Testfälle

Anschließend können die Testfälle in eine Datei übernommen werden. Auch hier fehlt wieder der Kontext, da die Datei standardmäßig einfach im Hauptverzeichnis des Projektes abgelegt wird, zumindest bei der JetBrains-IDE-Integration.

Genutzt werden für Codium die OpenAI-Modelle der GPT-3 und GPT-4 Reihe. Interessant ist Codium für Plattformen, bei denen sonst keine IDE-Integration vorliegt, da Codium hier mit Vielfalt glänzt.

Neben dem Codeassistenten bietet Codium mit Forge auch eine Lösung für das Review von Quellcode an.

Cody

Mit Cody existiert ein KI-gestützter Assistent zur Softwareentwicklung. Nicht verwechselt werden sollte der Assistent mit Cody AI, das sich mehr als KI-unterstützte Suche auf Basis einer Firmen-Wissensbasis versteht.

Neben der Webvariante von Cody werden primär die Entwicklungsumgebungen VS Code und die JetBrains-IDEs unterstützt. Daneben existiert eine experimentelle Unterstützung für Neovim. Andere IDEs wie Eclipse und Emacs sollen in Zukunft folgen.

In der JetBrains-Variante wirkt die Integration ausgereift. So ist nicht nur ein Fenster verfügbar, in dem ein Chat angezeigt wird, sondern es existiert auch eine Integration im Code-Editor.

Anhand des Methodennamens wurde der Inhalt der Methode generiert

Während im Chatfenster der Kontext, wie die aktuell verwendete Programmiersprache nicht erkannt wird, sieht dies im Code-Editor anders aus. Hier wird der Code in der verwendeten Sprache generiert.

Die Modellauswahl im Chat-Fenster

Ein Merkmal, mit dem sich Cody von anderen KI-Assistenten unterscheidet, ist die transparente Auswahl der genutzten Modelle. Das passende Modell kann hierbei einfach ausgewählt werden.

Neben den Möglichkeiten zur Codegenerierung bietet Cody auch die Möglichkeit vorgefertigte Kommandos zu nutzen und mit diesen das Dokumentieren von Quellcode oder Unit-Test zu automatisieren.

CodeSquire

CodeSquire ist eine spezialisierte KI-Assistent-Lösung in Form einer Erweiterung für den Browser Chrome. CodeSquire ist ein Tool für Datenwissenschaftler, das Kommentare in Code umwandelt, SQL-Anfragen aus natürlicher Sprache erstellt, intelligente Codevervollständigung bietet und komplexe Funktionen generiert.

Unterstützt werden aktuell Plattformen wie Google Colab, BigQuery und JupyterLab.

Diese Plattformen zählen zu IDEs, die meist speziell für interaktive Datenanalyse und wissenschaftliches Rechnen genutzt werden. Diese speziellen IDEs kombinieren viele Funktionen, die in traditionellen IDEs zu finden sind, wie Code-Editoren, Terminals und Dateibrowser, mit speziellen Werkzeugen für die Arbeit mit Daten und interaktiven Notebooks.

CodeWP

Ebenfalls zu den spezialisierten Lösungen zählt CodeWP, welches einen Assistenten darstellt, welcher auf WordPress spezialisiert ist.

CodeWP

Die dahinterliegenden Modelle sind darauf trainiert, Code in PHP und JavaScript im Kontext von WordPress zu generieren. So kann mit einem einzelnen Prompt ein einfaches Plugin generiert werden.

Die CodeWP-Website

CodeWP erweckt mit Aussagen wie Proprietary AI und More accurate than ChatGPT sowie der Aussage:

Our Al models are trained to output the best, most modern, secure, simple code for WordPress. So no need to worry about common bugs or issues.

den Eindruck, dass ein eigenes Sprachmodel verwendet wird, ohne auf Mitbewerber wie OpenAI angewiesen zu sein.

Cursor

Cursor versteht sich, im Gegensatz zu den bisher vorgestellten Assistenten, als dedizierte IDE mit einer KI-basierten Unterstützung für Entwicklung.

Technisch handelt es sich um einen Fork von VS Code. Der Grund hierfür, ist nach Aussage des Herstellers, in der besseren Anpassbarkeit der IDE zu finden.

Der Onboarding-Prozess von Cursor

Nach der Installation wird der Nutzer durch einen kleinen Onboarding-Prozess geführt. Dieser führt in die Möglichkeiten ein, Bugs zu identifizieren, spezifische Codestellen zu lokalisieren oder Code von einer Programmiersprache in eine andere zu übersetzen.

Cursor kann natürliche Sprache verstehen und darauf reagieren, was es erleichtern soll, direkt im Code-Editor mit der KI zu interagieren. So können Fragen zu Codebasis gestellt werden, Vervollständigungen angefordert werden oder Code-Snippets generieren werden.

Die Freemium-Version unterliegt einigen Einschränkungen, welche in den kostenpflichtigen Tarifen aufgehoben werden.

Fraglich ist, ob hierfür eine neue IDE benötigt, und warum nicht auf Integrationen für bestehende Systeme gesetzt wurde. In den meisten Fällen werden Entwickler doch meist auf ihre angestammten Werkzeuge setzen wollen.

GitHub Copilot

Zu den bekannteren Lösungen auf dem Markt zählt sicherlich GitHub Copilot. Dieses Werkzeug ist in allen Varianten (bis auf die Trial-Version) kostenpflichtig.

Neben der Nutzung über die Kommandozeile, existieren eine Reihe von IDE-Integrationen, insbesondere für Visual Studio, VS Code und die JetBrains IDEs. Daneben werden Vim und Neovim, sowie Azure Data Studio unterstützt.

GitHub Copilot in einer JetBrains-IDE

Positiv fällt die Autovervollständigung bzw. die Geschwindigkeit derselben auf. Allerdings ist sie in einigen Fällen auch relativ nervig, da sie bei der Entwicklung zu unnötiger Ablenkung führen kann.

Eine Methode wird generiert

Zumindest in den JetBrains-IDEs gibt es keine Integration über die Quick-Fixes-Funktionalität. Dafür stehen eine Reihe von Kommandos wie /tests, /simplify, /fix oder /explain zur Verfügung.

Diese können in der eingebauten Chat-Funktionalität genutzt werden. Die Ergebnisse werden im Chat angezeigt, können allerdings nicht automatisch ins Projekt übernommen werden, sondern müssen kopiert und wieder eingefügt werden. Besonders nervig ist dies bei der Generierung von Dokumentation für Methoden, wie sich im Vergleich zum Assistenten JetBrains AI zeigt.

Positiv hervorzuheben ist die automatische Übernahme des Kontexts, wenn Themen im Chat angesprochen und genutzt werden.

JetBrains AI

Das tschechische Unternehmen JetBrains ist primär für seine unterschiedlichen IDEs bekannt und bietet mit JetBrains AI einen Assistenten für KI-unterstütze Entwicklung. Auch JetBrains AI muss über ein Abonnement freigeschaltet werden. Wenig verwunderlich ist die Integration von JetBrains AI in die jeweiligen IDEs der Firma sehr gelungen.

Entwicklung mit der JetBrains AI

Neben der bei vielen KI-Assistenten gegebenen Möglichkeiten des Chats mit dem Sprachmodell, bietet JetBrains AI die Möglichkeit von Quick-Fixes in Form von AI Actions, welche unter anderem das Schreiben von Dokumentation oder das Generieren von Unit-Tests vereinfachen sollen.

Neben den vorgefertigten Prompts können eigene Prompts hinterlegt und diese dann ebenfalls über die AI Actions genutzt werden. Angenehm an JetBrains AI ist die Möglichkeit Dokumentation wie Javadoc automatisch für eine Methode generieren und antragen zu können.

Die Einstellungen für JetBrains AI

Automatische Codevorschläge während der Entwicklung sind so gestaltet, dass sie nicht unnötig ablenken und können über die Einstellungen konfiguriert werden.

Daneben findet sich der KI-Assistent noch in anderen Integrationen wieder, wie bei der Umbenennung bzw. der Namensfindung, hier werden neben den klassischen Vorschlägen auch KI-Vorschläge angezeigt.

Durch ein kleines Symbol wird transparent gezeigt, welche Vorschläge von der KI stammen und welche nicht. Grundsätzlich zieht sich diese Transparenz durch JetBrains AI bzw. dessen Implementation.

Auch Fragen zu bestimmten Teilen des Quellcodes können schnell und bequem gestellt werden, indem an der gewünschten Stelle über eine Quick-Action ein KI-Chat zum aktuellen Quellcode gestartet wird.

Weitere Kleinigkeiten sind die Generierung von Commit-Nachrichten, welche ebenfalls von JetBrains AI bereitgestellt werden.

Während im Standard-Abonnement von JetBrains AI nicht gewählt werden kann, welche Sprachmodelle verwendet werden, soll dies später in den Enterprise-Varianten auswählbar sein. Je nach genutzter Funktionalität scheinen im Moment unterschiedliche Modelle genutzt werden.

Neben JetBrains AI, verfügen einige IDEs wie IntelliJ IDEA Ultimate mittlerweile auch über Möglichkeiten zur Codevervollständigung über ein lokales Sprachmodell, welches ohne externe Zugriffe auskommt.

Die IDE-Integration von JetBrains AI wirkt insgesamt sehr ausgereift, insbesondere im Vergleich zu anderen KI-basierten Assistenten. Dafür steht JetBrains AI nur für die entsprechenden IDEs der Firma zur Verfügung.

Tabnine

Die Firma hinter Tabnine existiert schon länger als der aktuelle KI-Hype und hat seit längerem Code-Assistenten zur Unterstützung in der Entwicklung angeboten.

Ursprünglich bekannt als Codota, hat sich das Unternehmen auf die Entwicklung von KI-basierten Werkzeugen für Entwickler spezialisiert. Im Gegensatz zu vielen anderen Lösungen wird bei Tabnine, über Tabnine Enterprise, auch das Selbst-Hosting angeboten.

Interessant ist bei Tabnine die Wahl der Modelle zur Verarbeitung der Anfragen. Hier werden Modelle wie Tabnine Protected angeboten, welche nur mit Quellcodes trainiert wurden, welche eine entsprechende Lizenz besitzen und somit idealerweise z. B. keine Codeschnipsel unter GPL replizieren.

Auch werden je nach Modell gewisse Garantien gegeben, was Themen wie Datenschutz und die Weiterverwendung der Prompts angeht. Daneben werden die Modelle über Tags sinnvoll kategorisiert, sodass die Wahl des passenden Modells aufgrund dieser getätigt werden kann.

Die Auswahl der Modelle

Bei den IDEs unterstützt Tabnine eine Reihe von IDEs, angefangen bei VS Code über die JetBrains-IDEs, bis hin zu Neovim.

Die Fix-Funktionalität von Tabnine

In Bezug auf die IDE-Integration wirkt Tabnine in JetBrains-IDEs recht gut integriert. Dadurch können kontextbasierte Operationen wie das Beheben von Fehlern oder das Dokumentieren von Quellcode effizient durchgeführt werden.

Im Tabnine-Chat wird dabei eine Antwort generiert und dessen Ergebnis kann mit in den Quellcode übernommen werden.

Das manuelle Einfügen fühlt sich allerdings immer etwas umständlich an und aktiviert oft die automatische Codeformatierung nicht, was im schlechtesten Fall immer einen zusätzlichen Bearbeitungsschritt bedeutet.

Die Generation eines Tests schlägt fehl

Andere Operationen, wie die Erstellung eines Testplans, können unter Umständen scheitern, da eine vom Plugin generierte Datei möglicherweise nicht befüllt werden kann, was auf einen Bug hinzudeuten scheint.

Die Testplan-Ideen von Tabnine

Auch wenn die Ideen für den Testplan von Tabnine interessant sind, fühlt sich hier die Integration durch das manuelle Einfügen komplex und fehleranfällig an.

Analyse-Werkzeuge

Neben den allgemeinen Code-Assistenten existieren einige Werkzeuge, welche sich auf die Analyse von Quellcode spezialisiert haben, z. B. für das Review von Quellcode bzw. Pull Requests.

Amazon CodeGuru

Ein von Amazon angebotenes Analyse-Werkzeug ist Amazon CodeGuru. Dieses Werkzeug versteht sich als Scanner, um Sicherheitslücken und Schwachstellen im Code zu finden. Daneben werden auch Vorschläge erstellt wie Anwendungen optimiert bzw. beschleunigt werden können.

Gedacht ist dieses Werkzeug nicht für die direkte Nutzung, sondern eher für die Integration in entsprechende Pipelines.

Neben der Nutzung in AWS CodeCommit (das demnächst eingestellt wird) wird auch die Nutzung von BitBucket- und GitHub-Repositories unterstützt.

Sourcery AI

Sourcery AI versteht sich als Werkzeug für automatisches Reviewing. Verknüpft werden kann dieses Werkzeug unter anderem mit GitHub oder GitLab. Wenn gewünscht, wird so bei jedem Pull-Request ein entsprechender Kommentar hinterlassen.

Sourcery AI erstellt Kommentare zu einem Pull Request

Während die Nutzung für kommerzielle Projekte mit einem Abonnement verbunden ist, können Open-Source-Projekte Sourcery AI ohne weitere Kosten einsetzen.

Neben der Kommentierung des Pull-Requests werden auch Hinweise für den Reviewer und eine Zusammenfassung erstellt.

Snyk

Neben Werkzeugen, die sich auf normale Entwicklungsarbeiten konzentrierten, existiert mit Snyk ein Analyse-Werkzeug, welches Verwundbarkeiten und Sicherheitsprobleme im Code aufdecken soll.

Snyk in einer JetBrains IDE

Snyk positioniert sich als Werkzeug, das durch den Einsatz von maschinellem Lernen sowie dynamischen und statischen Analysen den Quellcode auf diese Problemklasse hin untersucht.

Dabei werden eine Reihe von Produkten angeboten, welche diese Technologie zur Anwendung bringen soll.

WhatTheDiff

Ähnlich wie Sourcery AI ist auch WhatTheDiff ein Werkzeug für automatisierte Code-Reviews.

Im Gegensatz zu Sourcery AI muss die GitHub-Integration vor der Nutzung konfiguriert und aktiviert werden.

Die Repositories müssen aktiviert werden

Nach der Aktivierung werden für Pull Requests automatisch Kommentare erzeugt.

What The Diff erzeugt automatisch Kommentare zu den Pull Requests

Wie bei Sourcery AI werden hier auch Kommentare zur Zusammenfassung und Review-Kommentare am Pull Request erstellt, welche dann bearbeitet werden können.

Weitere Werkzeuge

Neben den größeren Klassen wie Code-Assistenten und Analysewerkzeuge, existieren weitere Werkzeuge, welche KI-basiert einen Mehrwert in der Entwicklung bringen können.

bloop.ai

Unter bloop.ai werden verschiedene Services rund um KI-gestützte Codegenerierung und Nutzung angeboten.

So wird ein Dienst angeboten, welcher COBOL-Programme in lesbare Java-Applikationen umwandeln soll. Ein weiterer Dienst befasst sich mit einem Sprachmodell, welches direkt COBOL-Quellcode schreiben kann.

bloop indiziert ein Repository

Für den alltäglichen Gebrauch interessanter war die Understand-Funktionalität, die es ermöglicht, Repositories zu laden und anhand dieser Repositories Fragen zum Quellcode zu stellen.

Bloop wird zum Bevy-Projekt befragt

Diese existierte in einer freien Variante sowie in einer kostenpflichtigen Personal-Variante. In der kostenpflichtigen Variante wurde unter anderem die Indizierung mehrerer Branches ermöglicht.

Nach der kürzlich erfolgten Einstellung steht nur noch die freie Variante dieser Funktionalität zur Verfügung. Für den alltäglichen Gebrauch, vorwiegend mit unbekannteren Codebasen, kann dieses Werkzeug eine wertvolle Ergänzung sein.

GitFluence

Wer in der Softwareentwicklung arbeitet, wird oft auch mit Versionskontrollsystemen wie Git arbeiten. Auch hier existieren mittlerweile KI-Tools, welche unterstützen sollen.

GitFluence

Eines dieser Werkzeuge ist GitFluence, das unter der Haube mit der OpenAI-API arbeitet. Gedacht ist das Werkzeug für den Fall, dass eine Git-Aktion beschrieben wird und automatisch ein Git-Kommando dafür erstellt wird.

Dies wirkt allerdings in einigen Fällen eher unausgegoren und lieferte unbrauchbare Ergebnisse, während es sporadisch sinnvolle Antworten liefert.

Grit.io

Der Dienst Grit.io spezialisiert sich auf Code-Migration und automatische Dependency Upgrades. Aktuell ist er nur über eine Warteliste verfügbar, sodass hier eine genauere Beurteilung schwerfällt.

Eines der Beispiele von der Grit.io-Seite

Durch die automatische Aktualisierung von Abhängigkeiten und die Durchführung größerer Migrationen soll eine allgemeine Verbesserung der Codequalität stattfinden.

Mutable AI

Neben Code-Assistenten, die sich auf die Entwicklung spezialisieren, existieren auch solche Assistenten, die sich der Dokumentation und Schaffung einer Wissensbasis zur entwickelten Software verschrieben haben. Zu diesen Diensten gehört Mutable AI.

Eine Mutable AI-Wiki

Nach Abschluss eines Abonnements ist es möglich zu einem Repository ein automatisches Wiki zur Dokumentation zu erstellen. Neben dieser Art der Dokumentation kann die Codebasis auch über einen KI-Assistenten befragt werden.

Die Dokumentation wird automatisch bei Änderungen des Repositories aktualisiert.

SQLAI.ai

Für die Arbeit mit SQL und Datenbanken existieren eine Reihe von KI-Werkzeugen wie SQLAI.ai. Mithilfe dieser Werkzeuge können Abfragen erzeugt, überprüft und auf Fehler untersucht werden.

SQLAI

Im Wesentlichen generieren die meisten dieser Werkzeuge, häufig unter Einbeziehung zusätzlicher Informationen wie des Datenbankschemas, passende Eingaben für das verwendete Sprachmodell. Zusätzliche Metainformationen wie das Datenbankschema, helfen hierbei sinnvolle Ausgaben für die eigenen Projekte zu erzeugen.

Ein ähnliches Werkzeug ist AI Query, das ebenfalls über Werkzeuge zur SQL-Prüfung und Bearbeitung verfügt. Daneben existieren eine Vielzahl anderer Werkzeuge dieser Art wie TEXT2SQL oder AI2sql.

Über den Tellerrand

Neben all diesen Werkzeugen existieren weitere Ansätze und Möglichkeiten, welche die Entwicklung und Prozesse der Softwareentwicklung vereinfachen sollen.

So existiert mit Stepsize AI ein Werkzeug, welches Sprint Reports im Kontext der agieren Softwareentwicklung erzeugen soll oder mit Bugasura ein Bug-Tracker mit KI-Unterstützung.

Neben kommerziellen Lösungen, welche auf entsprechende Modelle von OpenAI und Co. setzen, existieren auch freie Modelle zur Entwicklung von Software.

Eines dieser Modelle ist PolyCoder, welches auf Basis von GPT-2, mit einem Korpus von über zwölf Programmiersprachen trainiert wurde. Ähnliches vermag CodeGeeX zu leisten, welches aus dem asiatischen Raum stammt.

Allerdings lassen sich diese Systeme nicht so einfach nutzen wie die vorkonfektionierten Angebote, kommerzieller Anbieter. Es muss ein entsprechender Setup-Aufwand geleistet werden, bevor die Modelle genutzt werden können. Darüber hinaus ist die Performanz lokal ausgeführter Modelle, aufgrund der genutzten Hardware, oft unzureichend.

Fazit

Sprachmodelle konnten für die Entwicklung bereits genutzt werden, bevor es spezielle Integrationen dafür gab. Dafür musste der Entwickler Prompts definieren und diese mit dem Quelltext in das Modell geben.

Viele Integrationen nehmen dem Entwickler das Schreiben des Prompts in vielen Fällen ab und ermöglichen so eine schnellere Nutzung der Modelle. Bedingt durch die zugrundeliegenden Sprachmodelle werden viele Programmiersprachen auch von den vorgestellten Werkzeugen unterstützt.

Damit können in der Theorie viele Standardaufgaben, wie die Dokumentation, Unit-Tests oder auch komplexere Dinge wie die Konvertierung zwischen zwei Programmiersprachen mehr oder weniger vereinfacht werden. Allerdings sollten die Ergebnisse dieser KI-basierten Assistenzfunktionen immer bewertet und analysiert werden und nicht einfach ungeprüft übernommen werden. Spätestens bei komplexeren Problemen, welche ein umfassenderes Verständnis über die Codebasis benötigen, versagen die KI-Assistenten in vielen Fällen.

Aktuell existieren auf dem Markt eine unzählige Anzahl von KI-Werkzeugen und jeden Tag werden es mehr. Einige dieser Werkzeuge werden wieder verschwinden, während andere Werkzeuge erhalten bleiben. Auch in Zukunft sollen KI-Assistenten weiter integriert werden, wie in XCode von Apple.

Für Code-Assistenten sowie zahlreiche andere Werkzeuge gilt, dass sie im Wesentlichen auf ähnliche Weise funktionieren: Ein beliebiger Prompt wird erstellt, an ein Sprachmodell übermittelt und von diesem verarbeitet.

Hier stechen am Ende nur Lösungen hervor, welche eine gute Integration bieten und es somit dem Entwickler nicht unnötig schwer machen, die Assistenzfunktionen im Arbeitsalltag anzuwenden.

Positiv haben neben der Integration der JetBrains AI die Codesuche über Bloop überrascht, bei welcher zu einer Codebasis Fragen gestellt werden können und diese Codebasis damit genauer und schneller kennengelernt werden kann.

Neben den praktischen Aspekten sollte auch beachtetet werden, dass ein Großteil der aktuellen KI-Lösungen kostenpflichtig sind und ihren Gegenwert einspielen müssen.

Abgesehen von den monetären Aspekten gilt es auch den Datenschutz zu beachten, schließlich werden in vielen Fällen vertrauliche Daten an Drittservices gesendet und dort verarbeitet.

Daneben ist die Datenbasis prinzipbedingt immer leicht veraltet. So können Informationen zu neuen Versionen einer Software z. B. zur Game Engine Bevy über viele Sprachmodelle nicht bezogen werden, da ihr Trainingsdatum vor dem Erscheinungsdatum der neuen Softwareversion liegt.

Ob sich die Technologie in Zukunft einen wirklichen Mehrwert in der Entwicklung bringt, wird sich zeigen. Gegenwärtig scheint es so, dass sich ein Teil der KI-Werkzeuge sich dem Plateau der Produktivität im Hype-Zyklus nähert.

Bei einer guten und niederschwelligen Integration kann damit vielleicht das ein oder andere KI-basierte Werkzeug seinen Weg in den Werkzeugkasten der Softwareentwicklung finden.

Dieser Artikel erschien ursprünglich auf Golem.de und ist hier in einer alternativen Variante zu finden.

Paketmanager – Software-Installation und Aktualisierung

Paketmanager haben den Prozess der Software-Installation und Aktualisierung vereinfacht und viele Probleme der Vergangenheit gelöst. Heute sind sie ein integraler Bestandteil vieler Systeme. Während der durchschnittliche Windows-Nutzer wahrscheinlich weniger mit der Begrifflichkeit eines Paketmanagers anfangen kann, sieht es bei Nutzern unixoider Systeme meist anders aus.

Vor allem bei Linux-Systemen sind sie ein essenzieller Bestandteil der allermeisten Distributionen und kommen hier in den unterschiedlichsten Formen vor. Mittlerweile haben sie sich allerdings darüber hinaus ausgebreitet und sind heute auch unter macOS und Windows zu finden.

Über diese Grenzen hinaus haben sich Paketmanager auch in anderen Bereichen etabliert hat, beispielsweise im Paket- und Abhängigkeitsmanagement innerhalb der Softwareentwicklung.

Unabhängig vom spezifischen Paketmanager folgen diese in der Regel einem ähnlichen Ablauf: Ein Nutzer beabsichtigt, eine Anwendung bzw. ein Paket zu installieren. Der Paketmanager identifiziert die erforderlichen Abhängigkeiten und installiert diese zusammen mit der gewünschten Software.

Definition

Doch was zeichnet einen Paketmanager aus? Grundsätzlich handelt es sich bei einem solchen um ein Werkzeug oder eine Sammlung an Werkzeugen, die dazu dient Software zu installieren, sie zu aktualisieren und wieder zu entfernen. Im Idealfall ist diese Entfernung rückstandslos. Auch die Konfiguration der Software ist eine Fähigkeit, welche von vielen Paketmanagementsystemen beherrscht wird.

Ziel ist es meist, die manuelle Installation und Verwaltung von Software unnötig zu machen, sodass diese im Idealfall immer über den Paketmanager bezogen werden kann.

Neben der eigentlichen Bereitstellung der gewünschten Software, ist ein wichtiger Teil des Paketmanagements die Installation und Verwaltung der Abhängigkeiten, welche von der Software benötigt werden. Dies umfasst beispielsweise die Handhabung verschiedener Versionen von Bibliotheken, die erforderlich sind, wenn mehrere installierte Anwendungen unterschiedliche Versionen einer Bibliothek benötigen.

Ein Paket umfasst in solchen Systemen, neben der eigentlichen Anwendung, eine Reihe von zusätzlichen Metadaten, welche als Informationen über das Paket und der Verwaltung dienen.

Daneben führen die Systeme Buch über installierte Software, was z. B. bei der Aktualisierung installierter Anwendungen von Belang ist.

Typen von Paketmanagern

Paketmanager lassen sich in verschiedene Typen einteilen. Einerseits existieren systemgebundene Paketmanager wie das Advanced Packaging Tool (APT), die integraler Bestandteil des jeweiligen Betriebssystems sind und eine konfliktfreie Installation von Anwendungen gewährleisten.

Ziel dieser Paketmanager ist die Softwareverwaltung für den Nutzer des Systems. Auch ist es bei diesen systemspezifischen Paketmanagern in den meisten Fällen so, dass Abhängigkeiten wie Bibliotheken im Idealfall nur einmal installiert werden.

Eine weitere Art von Paketmanagementsystemen sind App Stores. Hier steht jede Applikation für sich und wird mitsamt ihrer Abhängigkeiten installiert. Das bedeutet, dass z. B. Bibliotheken immer wieder mitgeliefert werden. Hier wird in der Theorie Speicherplatz verschenkt, da häufig verwendete Bibliotheken mehrfach vorhanden sein können.

Eine letzte und trotzdem in ihrer Wichtigkeit nicht zu unterschätzende Kategorie von Paketmanagern sind sprachspezifische Paketmanager. Bei diesen geht es um das Paket- und Abhängigkeitsmanagement von Bibliotheken im Rahmen der Softwareentwicklung. Beispiele für diese Manager sind Maven, Cargo und NPM. Sie werden vor allem in den vergangenen Jahren verstärkt eingesetzt. Einen Überblick über diese sprachspezifischen Paketmanager bietet die Webseite libraries.io.

Am Anfang war der Code

In frühen Systemen existierten keine Paketmanager im heutigen Sinne. Entweder wurden die mitgelieferten Systemwerkzeuge genutzt, oder die benötigte Software lag im Quelltext vor und wurde anschließend kompiliert und installiert.

Eine Applikation wird kompiliert

Im Laufe der Zeit wurden nicht nur die Systeme komplexer, sondern auch die auf ihr genutzten Anwendungen. Mithilfe von Build Automation Tools wie Make, wurde es möglich Software anhand des sogenannten Makefiles zu bauen. Allerdings wurde auch hier vorausgesetzt, dass die benötigten Abhängigkeiten auf dem System vorhanden waren.

Über den Befehl make kann der entsprechende Vorgang angestoßen werden. Damit vereinfachten Makefiles die Erzeugung der Software. Statt den Compiler, dazugehörige Linker und weitere Werkzeuge selbst aufrufen zu müssen, fungiert das Makefile als Mittler.

Abhängigkeiten

Im ersten Moment scheint es, als ob die Installation der Software aus dem Quelltext leicht von der Hand geht. Der Quelltext muss bezogen werden und anschließend kann die Applikation kompiliert und installiert werden.

Allerdings steht ein Programm meist nicht für sich, sondern ist auf gewisse Abhängigkeiten, wie verwendete Bibliotheken angewiesen. Sind diese Abhängigkeiten in einer falschen Version installiert, oder nicht vorhanden, schlägt die Erstellung der Applikation fehl.

Ein weiteres Problem ist, dass unixoide Systeme nicht unbedingt identisch sind und sich in kleineren und größeren Feinheiten unterschieden. Eine Lösung für diese Probleme bieten Werkzeuge wie autoconf vom GNU-Projekt und später CMake.

Über diese Build-Automatisierungstools wird das benötigte Makefile generiert, welches dann auf die Eigenheiten des eigentlichen Systems angepasst ist. So wird unter anderem überprüft, ob die benötigten Abhängigkeiten vorhanden sind und unter Umständen abgebrochen, wenn dies nicht der Fall ist.

Bislang nicht betrachtet wurde die Deinstallation einer Anwendung. Neben den eigentlichen Anwendungsdateien, eventuellen Bibliotheken und Konfigurationsdateien können hierzu auch Dateien zählen, welche während der Laufzeit der Anwendung erzeugt wurden.

Diese von Hand zu entfernen, ist im besten Fall ein zeitaufwendiger Prozess. Spätestens an dieser Stelle erweist sich ein funktionierendes Paketmanagementsystem als Segen.

Quell- vs. Binärpakete

Bei dem oben beschriebenen Verfahren wurde die Software direkt auf dem System kompiliert. Dies hat einige Vorteile. So kann die jeweilige Software mit entsprechender CPU-Optimierung kompiliert werden und somit optimal auf das System abgestimmt werden. Allerdings nimmt ein solcher Vorgang Zeit in Anspruch, vorwiegend bei der Kompilierung größerer Softwarepakete wie einem Browser.

Bei Paketmanagern wird hier die Unterscheidung zwischen Quell- und Binärpaketen getroffen. Quellpakete enthalten den Quellcode der Anwendung und werden direkt auf dem Rechner des Nutzers kompiliert.

Binärpakete hingegen enthalten eine vorkompilierte Anwendung, welche auf eine bestimmte Architektur optimiert ist. Damit muss das Paket nur noch vom Paketmanager heruntergeladen, entpackt und installiert werden. Neben der fehlenden Optimierung auf den konkreten CPU-Typ haben Binärpakete weitere Nachteile. Viele Anwendungen verfügen über bestimmte Schalter zu Compile-Zeit, um bestimmte Module und Funktionalitäten in die Anwendung zu integrieren. Ist dies während der Erstellung des Binärpaketes nicht geschehen, so kann das Modul bzw. die gewünschte Funktionalität nicht ohne Weiteres genutzt werden.

Anfänge der Paketmanager

Mit der Idee der Paketierung war der Gedanke zu einem Paketmanager nicht mehr weit. Auch wenn solche Manager unter Linux gängig wurden, gab es sie in Ansätzen bereits davor.

Einer der ersten Paketmanager war das System Management Interface Tool (SMIT) für AIX, welches mit der Version 3.0 von AIX im Jahr 1989 Einzug hielt. Unter der Oberfläche wurde für diese Aufgabe installp als Backend genutzt.

Im Linux-Bereich zählte das package management system (pms) zu den ersten Paketmanagern. Dieses erschien in Version 1.0 Mitte des Jahres 1994. Genutzt wurde dieses in der Distribution Bogus Linux. Dies führte historisch betrachtet unter anderem zum RPM-Paketmanager, welcher ursprünglich von Red Hat stammt und 1995 mit Red Hat Linux 2.0 ausgeliefert wurde.

In einen ähnlichen Zeitrahmen fallen die Entwicklung des Debian Package Managers, der vom StopAlop, einem weiteren Paketmanager aus der Frühzeit der Paketmanager, inspiriert wurde.

Die erste Version des Debian Package Managers wurde 1994 von Ian Murdock entwickelt, damals noch in Form eines Shellskriptes. Aus diesem entstand im Laufe der Jahre das dpkg der Neuzeit.

Aus diesen Low-Level-Paketmanagern entwickelten sich schließlich Systeme, welche Repositorys der verfügbaren Software bereithielten und diese zur Installation derselben nutzten, sodass auch das Problem der Paketbeschaffung bzw. der eigenen Paketierung in den meisten Fällen gelöst war.

Im Jahr 1995 begannen viele Paketmanager mit der Implementierung eines Workflows, der mit dem Herunterladen des Pakets beginnt und die automatische Auflösung sowie Installation von Abhängigkeiten beinhaltet.

Neben eigentlichen Applikationen wurden Systempaketmanager auch genutzt, um Bibliotheken und andere Funktionalität bestimmter Programmiersprachen wie Python über diese zu installieren. Heutzutage wird dies mehrheitlich über sprachspezifische Paketmanager gelöst.

Low-Level- und High-Level-Paketmanager

Werkzeuge wie dpkg, zählen wie oben bereits erwähnt zu den Low-Level-Paketmanagern. Zwar vereinfachen sie die Installation von Paketen, aber aus Sicht des Nutzers, sind immer noch viele manuelle Schritte notwendig, um das System auf einem aktuellen Stand zu halten.

Low-Level-Paketmanager samt Herkunft und High-Level-Paketmanager

Hier kommen High-Level-Paketmanager ins Spiel. Diese vereinfachen die Bedienung und dienen sozusagen als Frontend für den eigentlichen Nutzer. Daneben gruppieren sie Operationen der zugrundeliegenden Low-Level-Paketmanager.

Neben dem traditionellen Weg, Software als Archiv auszuliefern, wurde mit den Paketmanagern für die jeweiligen Distributionen ein zentrales Repository mit Software geschaffen, welches von der jeweiligen Distribution gepflegt wurde.

Interessant an diesem zentralen Repositorys ist, dass die Software, welche in diesen vorliegt, technisch betrachtet ein Fork der Originale ist. Der Vorteil dieser Vorgehensweise ist die Entkopplung, sodass eine Distribution eigene Aktualisierungen für eine Anwendung bereitstellen kann. Dies gilt auch für den Fall, dass die Software nicht mehr aktiv unterstützt wird.

Auch wenn von einem zentralen Repository die Rede ist, sieht es in den eigentlichen Distributionen meist etwas differenzierter aus. Unter Ubuntu z. B. existieren die Repositories Main, Universe, Restricted und Multiverse.

Das Main-Repository umfasst von Canonical unterstützte freie Software, die als grundlegend und essenziell für das System angesehen wird. Das Universe-Repository wird von der Community gepflegt und enthält ebenfalls freie Software, die von Nutzern beigetragen und verwaltet wird.

Im Restricted-Repository finden sich proprietäre Treiber für Geräte, die aus lizenzrechtlichen Gründen nicht im Main-Repository enthalten sind. Schließlich existiert noch das Multiverse-Repository, das Software beinhaltet, die durch Urheberrecht oder andere rechtliche Fragen eingeschränkt ist und deshalb spezielle Vereinbarungen für die Nutzung oder Verbreitung erfordert.

Daneben liegen für die unterschiedlichen Repositorys verschiedene Spiegelserver vor, welche die Pakete redundant und geografisch verteilt vorhalten.

Auch Abhängigkeiten werden von High-Level-Paketmanagern wesentlich sinnvoller behandelt. Während eine Paketinstallation per dpkg verlangt, dass alle Abhängigkeiten installiert sind, übernimmt apt diese Aufgabe automatisch. Hierbei werden die Abhängigkeiten in die korrekte Reihenfolge gebracht, bezogen und anschließend installiert.

Durch die zentralen Repositorys ist es über wenige Befehle möglich, den kompletten Softwarebestand zu aktualisieren. Auch der Wegfall von Abhängigkeiten wird bemerkt und so werden nicht mehr benötigte Pakete auf Wunsch automatisch deinstalliert.

Anatomie eines Paketmanagmentsystems

Einige Eigenschaften, welche ein Paket ausmachen, wurden bereits beschrieben. Trotzdem soll an dieser Stelle genauer auf die Anatomie eines Pakets und des Managementsystems dahinter eingegangen werden. Hierbei wird dpkg als Beispiel herangezogen.

Der Debian Package Manager ist dafür verantwortlich, ein Paket zu installieren und wieder zu deinstallieren. Hierzu wird die DEB-Datei, welche das Paket darstellt, im ersten Schritt entpackt und anschließend ein Pre-Install-Skript ausgeführt.

Nach dessen Ausführung werden die Komponenten des Paketes an die korrekten Stellen im Dateisystem kopiert und anschließend das Post-Install-Skript ausgeführt. Bei der Deinstallation läuft dieser Vorgang ähnlich ab. Auch hier werden wieder Pre– und Post-Remove-Skripte durchgeführt. Daneben verwaltet dpkg eine Datenbank der installierten Pakete.

Im Einzelnen besteht ein DEB-Paket aus dem sogenannten Debian-Binary. In dieser Datei ist die Version des Dateiformates hinterlegt. Dies sollte bei aktuellen Distributionen immer 2.0 sein. Trotz ihres Namens handelt es sich um eine gewöhnliche Textdatei.

Ein entpacktes DEB-Archiv mit dem control-Ordner

Anschließend folgen zwei Archive, eines für die Meta-Informationen und eines für die eigentlichen Daten. Bei den Archiven werden zwei unterschiedliche Archivierungsverfahren unterstützt. So kann im Falle des control-Archivs das Archiv als control.tar.gz oder control.tar.xz vorliegen.

Das control-Archiv enthält mehrere wichtige Dateien. Die erste Datei ist die Datei control. Diese enthält Informationen über das Paket wie Paketname, Version, Abhängigkeiten, Konflikte, Beschreibung und mehr.

Für das Paket nginx-common sieht diese Datei beispielhaft wie folgt aus:

Package: nginx-common
Source: nginx
Version: 1.24.0-2
Architecture: all
Maintainer: Debian Nginx Maintainers 
Installed-Size: 306
Depends: debconf (>= 0.5) | debconf-2.0, nginx (>= 1.24.0-2), nginx (<< 1.24.0-2.1~)
Suggests: fcgiwrap, nginx-doc, ssl-cert
Breaks: nginx (<< 1.22.1-8)
Replaces: nginx (<< 1.22.1-8)
Section: httpd
Priority: optional
Multi-Arch: foreign
Homepage: https://nginx.org
Description: small, powerful, scalable web/proxy server - common files
 Nginx ("engine X") is a high-performance web and reverse proxy server
 created by Igor Sysoev. It can be used both as a standalone web server
 and as a proxy to reduce the load on back-end HTTP or mail servers.
 .
 This package contains base configuration files used by all versions of
 nginx.

Daneben sind die entsprechenden Pre- und Postskripte enthalten (preinst, postinst, prerm, postrm). Diese Skripte werden verwendet, um spezielle Aufgaben auszuführen, die für das Paket notwendig sind, wie das Konfigurieren von Systemdiensten oder das Aktualisieren von Konfigurationsdateien.

Die Datei conffiles enthält eine Liste von Konfigurationsdateien, die vom Paketmanagementsystem während einer Aktualisierung behandelt werden, um benutzerdefinierte Änderungen zu erhalten.

Über die Datei md5sums, eine Liste von MD5-Prüfsummen für die Dateien, die im Paket enthalten sind, kann die Integrität dieser überprüft werden.

Der entpackte data-Ordner in einem DEB-Archiv

Die eigentlichen Daten des DEB-Archives finden sich im data-Archiv (data.tar.gz oder data.tar.xz). Dieses Archiv enthält die Dateien, die zum System hinzugefügt werden, wenn das Paket installiert wird. Die Dateien in diesem Archiv werden relativ zum Wurzelverzeichnis des Ziel-Dateisystems extrahiert.

Paketdatenbank

Neben den eigentlichen Paketen nimmt die Paketdatenbank einen großen Stellenwert ein. Die Paketdatenbank von Debian und darauf basierenden Distributionen wird von dpkg verwaltet und speichert Informationen über alle installierten, gelöschten oder sonst wie bekannten Pakete auf dem System. Die Datenbank befindet sich im Verzeichnis /var/lib/dpkg/ und besteht aus mehreren Dateien und Verzeichnissen, die verschiedene Aspekte der Paketverwaltung abdecken.

Die Datei /var/lib/dpkg/status enthält den aktuellen Status aller Pakete. Sie listet Pakete auf, die installiert sind, deren Installation erwartet wird, die zur Deinstallation oder vollständigen Entfernung markiert sind, und so weiter. Für jedes Paket enthält diese Datei Metadaten wie Version, Architektur, Abhängigkeiten, Beschreibung und vieles mehr.

Die Paketdatenbank des Debian Package Managers

Die Datei /var/lib/dpkg/available enthält Informationen über verfügbare Pakete, aus den Repositorys. Diese Datei wird z. B. durch den Befehl apt update aktualisiert.

Das Verzeichnis /var/lib/dpkg/info/ enthält spezifische Dateien für jedes Paket, wie Konfigurationsskripte. Diese Dateien werden von dpkg während der Installation und Deinstallation verwendet, um sicherzustellen, dass diese Prozesse korrekt durchgeführt werden.

Die Paketdatenbank wird von dpkg und anderen Frontends wie APT, Aptitude oder Synaptic verwendet, um Paketoperationen durchzuführen. Es ist wichtig, dass diese Datenbank konsistent und unbeschädigt bleibt, da Inkonsistenzen zu Problemen bei der Paketverwaltung führen können.

Die Konsistenz der Paketdatenbank in Debian-basierten Systemen wird durch eine Kombination aus Designentscheidungen, Dateisystemtransaktionen und Sperrmechanismen sichergestellt.

Welche Version darf es sein?

Eine Paketverwaltung im Distributionsumfeld, kann trotz ihrer Vorteile, einige Herausforderungen mit sich bringen. Je nach der Politik der gewählten Distribution kann es sein, dass nur bestimmte und unter Umständen veraltete Versionen gepflegt werden. Dies ist z. B. bei Debian Stable der Fall, während bei anderen Distributionen wie bei Arch Linux immer die neusten Anwendungen, dank des Rolling Releases-Prozesses, mitgeliefert werden.

Die Nutzung eines Paketmanagers kann dazu führen, dass Nutzer weniger Kontrolle über spezifische Konfigurationen der installierten Software haben, da viele Einstellungen bereits festgelegt wurden.

Die Sicherheit hängt zudem von der Vertrauenswürdigkeit der Softwarequellen, den sogenannten Repositorys, ab. Eine Kompromittierung eines Repositorys kann die Verbreitung schädlicher Software begünstigen. Trotz verschiedener Sicherheitsmaßnahmen kann ein solches Risiko nicht gänzlich ausgeschlossen werden.

Paketmanager je Betriebssystem

Neben der grauen Theorie werden Paketmanager natürlich auch genutzt. Hierfür stehen je nach Betriebssystem unterschiedlichste Paketmanager zur Verfügung, von deinen einige nachfolgend vorgestellt werden sollen.

Linux

Unter Linux existieren eine Vielzahl an Paketmanagern. Zu den häufigeren verwendeten gehört sicherlich dpkg mitsamt seiner Frontends, wie APT. Auf Debian basierende Distributionen wie Ubuntu nutzten dieses System ebenfalls.

Ein weiterer bekannter Paketmanager ist RPM, welcher unter anderem bei Red Hat Linux zum Tragen kommt. RPM steht hierbei für RPM Package Manager, welcher ursprünglich als Red Hat Package Manager bezeichnet wurde.

Im Laufe der Zeit wurde der RPM Package Manager weiterentwickelt und verbessert. Das RPM-Format selbst wurde standardisiert, und es wurden Werkzeuge wie YUM (Yellowdog Updater, Modified) und später DNF (Dandified Yum) entwickelt, die als Frontends für RPM dienen und zusätzliche Funktionen wie einfachere Abhängigkeitsauflösung und automatische Updates bieten.

Daneben existieren weitere Paketmanagementsysteme wie Pacman unter Arch Linux. Üblicherweise ist das Paketverwaltungssystem eines der Systeme, die näher betrachtet werden, wenn sich intensiver mit einer Distribution auseinandersetzt wird.

Neben diesen gewöhnlichen Paketmanagern gibt es auch neue Konzepte, wie Nix und NixOS, welche deklarative Ansätze für die Paketverwaltung nutzen.

Snap, Flatpak und Co.

In der Linux-Welt sind zusätzlich zu den Systempaketmanagern weitere Paketformate entstanden, die darauf abzielen, Softwarepakete unabhängiger von den einzelnen Distributionen zu gestalten.

Unter Ubuntu ist das Snap-Format stark vertreten, bei anderen Distributionen hingegen Flatpack. Snap und Flatpak sind moderne Paketmanagement- und Bereitstellungssysteme, die das Ziel haben, die Installation und Verwaltung von Software auf Linux-Systemen zu vereinfachen und zu vereinheitlichen. Sie ergänzen traditionelle Paketmanager wie APT und bieten einige Vorteile.

Snap ist ein Paketformat, das von Canonical entwickelt wurde. Snap-Pakete sind in sich geschlossene Softwarepakete, die alle notwendigen Abhängigkeiten enthalten, um auf einer Vielzahl von Linux-Distributionen zu laufen. Das Snap-System verwendet ein zentrales Repository namens Snap Store, in dem der Nutzer Software suchen und installieren kann.

Snaps sind in der Regel größer als traditionelle Pakete, da sie alle Abhängigkeiten enthalten, bieten dafür aber andere Vorteile. So laufen Snaps in einer Sandbox-Umgebung, die die Sicherheit erhöht, indem sie den Zugriff der Anwendung auf das System beschränkt.

Durch den Dienst snapd, werden Snaps automatisch aktualisiert, was die Wartung vereinfacht. Aus Entwicklersicht können Anwendungen leichter veröffentlicht und aktualisiert werden, da nicht diese nicht auf die Paketverwaltung der einzelnen Distributionen angewiesen sind.

Flatpak ist ein ähnliches System, entwickelt von der unabhängigen Community. Es zielt ebenfalls darauf ab, distributionsübergreifend Software bereitzustellen und verwendet für die Verteilung von Softwarepaketen sogenannte Remotes wie Flathub. Flatpaks können auf einer Vielzahl von Linux-Distributionen laufen. Ähnlich wie Snaps bieten Flatpaks eine Sandbox-Umgebung, die die Sicherheit verbessern soll.

Beide Systeme, Snap und Flatpak, tragen in der Theorie dazu bei, die Fragmentierung im Linux-Ökosystem zu verringern und die Softwareverteilung zu vereinfachen. Sie bieten eine Plattform für Entwickler, um ihre Anwendungen einem breiteren Publikum zur Verfügung zu stellen. Der Nutzer kann über diese Systeme Anwendungen unabhängig von der spezifischen Linux-Distribution installieren.

AppImage ist ein weiteres Format für portable Softwarepakete unter Linux. Im Gegensatz zu Snap und Flatpak wird bei AppImages keine Installation durchgeführt. Stattdessen sind AppImages eigenständige ausführbare Dateien, die alle Abhängigkeiten enthalten und direkt ausgeführt werden können.

macOS

Unter macOS existieren neben dem integrierten App Store, welcher 2011 eingeführt wurde, weitere Paketmanager, bei denen es sich um Community-Projekte handelt.

Der App Store unter macOS

Der App Store selbst ist im Gegensatz zu seinem iOS-Pendant nicht verpflichtend zu nutzen. Auch wenn unsignierte Software mittlerweile nur nach einigen Warnmeldungen gestartet werden kann.

Bei den Community-Projekten stechen die Werkzeuge MacPorts und Homebrew hervor. MacPorts, früher unter dem Namen DarwinPorts bekannt, ist seit 2002 verfügbar und liegt mittlerweile in Version 2.8.1 vor.

MacPorts ist darauf ausgelegt, für jeden Port alle Abhängigkeiten selbst aus dem Quelltext zu kompilieren und zu verwalten. Dies führt zu einer größeren Isolation und Konsistenz, kann aber auch die Nutzung von mehr Speicherplatz und längere Installationszeiten bedeuten.

Der Paketmanager Homebrew wurde 2009 von Max Howell entwickelt. Homebrew versucht, wo möglich, vorhandene Systembibliotheken zu nutzen und installiert nur Abhängigkeiten die darüber hinaus benötigt werden. Dies kann zu schnelleren Installationen führen, birgt aber auch das Risiko eines Konfliktes mit Systembibliotheken.

Homebrew wird oft als benutzerfreundlicher wahrgenommen, mit einfacheren Befehlen und einer einfacheren Installation. Daneben verfügt es über eine breite Unterstützung für Binärpakete, die auf eine schnelle Installation abzielen und das Softwareangebot erweitern.

Die Anwendung der jeweiligen Paketmanager bleibt hierbei dem Nutzer überlassen, je nach dem gewünschten Anwendungszweck. So benötigt MacPorts Administratorrechte, während Homebrew in den meisten Fällen ohne solche auskommt. Genutzt werden beide Paketmanager über das Terminal.

Windows

An Windows ist der Erfolg der Paketmanager ebenfalls nicht vorbeigegangen. So wurde schon seit Windows Vista die Applikation Pkgmgr.exe mitgeliefert. Dabei handelte es sich um einen Paketmanager zur Installation und Deinstallation von Paketen.

Allerdings war dieser Paketmanager nicht für den Nutzer des Systems gedacht. Stattdessen diente er dazu, Komponenten des Betriebssystems zu installieren. Später wurde dieses System insbesondere durch DISM (Deployment Image Servicing and Management) abgelöst.

Neben dem Microsoft Store, welcher als App Store fungiert, existieren auch für Windows eine Reihe von Community getriebenen Paketmanagern. Hier wären unter anderem Chocolatey und Scoop zu nennen. Microsoft hat mit dem Windows Package Manager (winget) ebenfalls einen solchen Paketmanager vorgestellt. Eine detaillierte Betrachtung dieser Paketmanager findet sich auf Golem.de.

Daneben existieren auch Client-Managment-Plattformen, wie ACMP, welche für die Nutzer die Softwareinstallation aus einem Katalog ermöglichen und meist im geschäftlichen Umfeld zu finden sind.

Mobile Systeme

Während Systeme wie die PDAs von Palm überwiegend von Hand mit Apps bestückt wurden, sah dies bei den großen mobilen Systemen der Neuzeit, namentlich Android und iOS anders aus. Hier gab es bereits zu Beginn entsprechende
App Stores.

Google Play

Unter Android war dies der Android Market, welcher schließlich in Google Play aufging, unter iOS der App Store, welcher mit der Version iOS 2 (iPhone OS 2.0) seinen ersten Auftritt hatte.

Software kann über diese App Stores installiert, aktualisiert und deinstalliert werden. Im Unterschied zu reinen Paketmanagement-Lösungen bieten diese App Stores zusätzliche Dienste. Sie wickeln unter anderem Zahlungen ab, was sowohl In-App-Käufe als auch Abonnements einschließt.

Im Android-Bereich existieren daneben weitere alternative App Stores, wie der F-Droid App Store, welcher auf freie Software spezialisiert ist. Unter iOS ist dies bislang nicht ohne Jailbreak möglich. Dies soll sich allerdings durch den Digital Markets Act in der EU ändern.

Auch andere mobile Ökosysteme nutzen ihre jeweiligen App Stores wie Amazon, Samsung und Huawei.

Fazit

Ian Murdock, einer der Mitbegründer des Debian-Projektes, nannte Paketmanager einmal den größten einzelnen Fortschritt, welchen Linux der Industrie bescherte.

Sie erleichtern die Handhabung von Abhängigkeiten und Kompatibilitätsproblemen, die sonst für den Nutzer eine Herausforderung darstellen könnten. Mit dieser Idee haben sie viele Domänen erobert.

So begegnet uns das Konzept der Paketierung immer wieder, z. B. bei Docker-Containern. Auch bei neuen Programmiersprachen, wie Rust, wird das Paketmanagement gleich mitgedacht.

Paketmanager nehmen eine wichtige Rolle ein, indem sie die Installation, Aktualisierung und Entfernung von Softwarepaketen auf effiziente und benutzerfreundliche Weise ermöglichen und uns so auch in Zukunft begleiten werden.

In Zukunft wird auch verstärkt der Fokus auf unveränderliche Systeme und containerisierte Anwendungen gerichtet sein. Dieser Ansatz hat in jüngster Zeit mit Technologien wie Podman und Co. den Weg zurück auf den Desktop gefunden und spiegelt die wachsende Präferenz für isolierte, konsistente und portable Anwendungsumgebungen wider.

Dieser Artikel erschien ursprünglich auf Golem.de und ist hier in einer alternativen Variante zu finden.

Self Healing Code

In der Softwareentwicklung stellt sich manchmal das Gefühl ein, von Buzzwörtern umgeben zu sein. Auch Self Healing Code könnte ein solches sein. Doch trägt das Konzept einige interessante Eigenschaften mit sich und sollte nicht vorschnell verworfen werden.

Die grobe Idee hinter diesem Konzept ist es, dass die Anwendung Fehler erkennen und diese im Idealfall auch beheben kann. Dieser Prozess soll ohne menschliches Eingreifen stattfinden.

Neben der einzelnen Applikation kann, sich ein solches Verhalten auf komplexere Systeme und deren Zusammenspiel beziehen. Neben der Fehlerbehebung, während der Laufzeit einer solchen Software, wird der Begriff des Self Healing Code in letzter Zeit auch im Zusammenhang mit generativer KI genutzt.

Definition

Im Bereich der Softwareentwicklung ist Self Healing Code so definiert, dass ein Programm in der Lage ist, Fehler zu erkennen und zu korrigieren. Verwandt damit ist der Begriff der selbstheilenden Systeme, denen die Fähigkeit inhärent ist, aus einem defekten Zustand wieder in einen funktionalen Zustand zu wechseln.

Ein einfaches Model von Self Healing Code

Das Ziel des selbstheilenden Codes ist es, die Notwendigkeit menschlicher Eingriffe zu minimieren und die Betriebszeit und Effizienz der Software zu maximieren. Dies kann durch die Implementierung von Überwachungs- und Diagnosefunktionen erreicht werden, die auf Anomalien oder Fehler hin überprüfen. Sobald ein Problem erkannt wird, wird versucht darauf zu reagieren, indem entweder eine Korrekturmaßnahme ausgeführt oder auf einen vorherigen stabilen Zustand zurückkehrt wird.

Defensive Programmierung

Eng verwandt mit Self Healing Code ist defensive Programmierung. Beides sind Praktiken, die dazu dienen, die Robustheit und Zuverlässigkeit von Software zu verbessern, aber sie tun dies auf unterschiedliche Weisen.

Defensive Programmierung ist eine Methode, bei der der Entwickler davon ausgeht, dass Probleme auftreten werden und daher Vorkehrungen trifft, um diese zu bewältigen. Dies kann beinhalten, dass überprüft wird, ob Eingaben gültig sind, bevor sie verwendet werden, Ausnahmen ordnungsgemäß behandelt werden und der Code so geschrieben wird, dass er leicht zu verstehen und zu warten ist.

Das Ziel der defensiven Programmierung ist es, die Anzahl der Fehler zu reduzieren und sicherzustellen, dass die Anwendung auch bei unerwarteten Eingaben oder Bedingungen korrekt funktioniert.

Selbstheilender Code hingegen geht einen Schritt weiter. Anstatt nur zu versuchen, Fehler zu vermeiden, versucht er, Fehler zu erkennen und zu beheben, wenn sie auftreten.

Bei der Betrachtung von Self Healing Code sollte auch defensive Programmierung Berücksichtigung finden. Diese kann dazu beitragen, die Anzahl der Fehler zu reduzieren, die auftreten können. Self Healing Code kann anschließend dazu beitragen, die Auswirkungen der Fehler zu minimieren, die trotzdem auftraten.

Implementation

Natürlich muss die gewünschte Funktionsweise der Selbstheilung bei der Entwicklung und dem Design einer Applikation und entsprechender Systeme berücksichtigt und implementiert werden.

Der erste Schritt ist die Fehlererkennung. Das bedeutet, dass die Applikation in der Lage sein muss, eventuelle Fehler und Probleme selbstständig zu erkennen. Hier können Applikationslogiken, Logs oder auch Überwachungssysteme genutzt werden.

Wird eine Anwendung oder ein Teil eines Softwaresystems überwacht, so müssen Schwellwerte definiert werden, welche definieren, ab wann die Services sich in einem kritischen Zustand befinden, damit darauf basierend Maßnahmen ergriffen werden können.

Präventiv und reaktiv

Die Fähigkeit der Selbstheilung kann in präventives und reaktives Handeln unterschieden werden. Beim präventiven Handeln werden gewisse Schlüsselindikatoren von der Applikation ausgewertet und darauf basierend eine Handlung ausgelöst.

So könnte eine Server-Applikation keine neuen Verbindungen mehr zulassen, wenn die CPU-Auslastung auf dem eigenen System zu hoch ist und somit einer Überlastung vorbeugen.

Reaktives Handeln ist vonseiten der Applikation immer dann notwendig, nachdem es zu einem Fehler gekommen ist. In diesem Fall muss die Applikation reagieren, um wieder einen funktionsfähigen Ablauf herstellen zu können.

Fehlerbeseitigung

Wurde ein Fehler erkannt, sollte er im nächsten Schritt behoben werden. Hier sind unterschiedliche Möglichkeiten denkbar, wie der Neustart eines Services oder das Ausweichen auf andere Datenquellen.

Dieser Prozess der Erkennung und Beseitigung von Fehlern und Problemen sollte ebenfalls automatisiert sein, sodass er ohne menschliche Einwirkung auskommt. Wird der Mechanismus aktiv, sollte ein Logging vorgenommen werden, damit dies später nachvollzogen werden kann.

Test und Dokumentation

Neben der Implementierung sollten selbstheilende Funktionalitäten auch regelmäßig getestet und gut dokumentiert werden, um bei Bedarf eine schnelle und effiziente Fehleranalyse zu ermöglichen.

Auch auf Sicherheitsaspekte sollte achtgegeben werden. Es sollte sichergestellt werden, dass die Maßnahmen zur Selbstheilung nicht von außen manipuliert oder missbraucht werden können.

Ein einfaches Beispiel

Wie könnte die Anwendung dieses Konzeptes aussehen? Ein heruntergebrochenes Beispiel unter Java könnte sich wie folgt darstellen:

public Connection connectToDatabase() {

    Connection connection = null;

    while (connection == null) {
        
        try {
            connection = DriverManager.getConnection(URL, USER, PASSWORD);
        } catch (SQLException e) {

            try {
                Thread.sleep(5000);
            } catch (InterruptedException e) {
                // Ignore
            }
        }
    }

    return connection;
}

In der Methode connectToDatabase soll eine Datenbankverbindung erstellt und diese anschließend zurückgegeben werden. Tritt beim Aufbau der Verbindung eine Ausnahme auf, so wird versucht nach einer Wartezeit nochmals eine Verbindung aufzubauen, in der Hoffnung, dass der Fehler nur temporärer Natur war.

Damit wird dem Nutzer eine Alternative zu einem völligen Abbruch des Verbindungsversuches geboten. Im Idealfall, auch bei Auftreten eines Fehlers, wird ein verzögerter Aufbau der Verbindung ermöglicht. In der Praxis sollte dieses Beispiel allerdings in der vereinfachten Form nicht genutzt werden, da die Methode connectToDatabase niemals eine Antwort liefern würde, wenn die Datenbank nicht mehr antwortet. Hier ist es nötig, nach einer gewissen Zeit oder einer bestimmten Anzahl an Versuchen abzubrechen.

Methodiken und Pattern

Für die Bereitstellungen selbstheilenden Codes können unterschiedlichste Methodiken innerhalb einer Applikation genutzt werden, um dieses Konzept zum Erfolg zu führen.

Dies führt vom Einsatz von Entwurfsmustern wie dem Circut Breaker über die Möglichkeit zum Failover, den Neustart fehlerhafter Komponenten, oder die Nutzung von Read-Only-Mechanismen, bei verschlechternder Servicequalität.

Circut Breaker

Der Circuit Breaker ist ein Entwurfsmuster, welches verwendet wird, um Systeme zu schützen. Die Benamung ist nicht ohne Grund so gewählt, da er wie eine Sicherung die Verbindung zu einem System kappt, wenn bestimmte Kriterien erfüllt sind.

Dies kann z. B. eine definierte Fehlerrate in einem bestimmten Zeitraum sein. Ein Beispiel wäre ein Webservice, welcher wiederholt auf Anfragen nicht antwortet. Der Aufrufer könnte nun versuchen immer und immer wieder Anfragen zu senden, was dazu führen kann, dass das System im schlimmsten Fall unter der Last zusammenbricht.

Hier greift der Circut Breaker ein und unterbricht die Verbindung. Indessen kann in der Anwendung auf den Fehler reagiert werden, die Anfrage z. B. zu einem späteren Zeitpunkt wiederholt werden.

Meist wird nach einer Cooldown-Phase die Verbindung zum Service wieder aufgenommen. Treten hierbei wieder Fehler auf, so wird der Circut Breaker die Verbindung erneut trennen und der Prozess beginnt von vorn.

Auch in der Applikation selbst führt dies zu positiven Effekten, da nicht mehr auf die entsprechende Verbindung gewartet werden muss und eventuell dafür genutzte Threads und weitere Ressourcen für diesen Moment abgewickelt werden können.

Failover

Eine weitere Möglichkeit für Self Healing Code ist die Implementierung von Failover-Verfahren unter der Bereitstellung von Redundanz. Grundsätzlich bedeutet dies, dass auf andere Systeme umgeschaltet wird, wenn das angefragte System ausfällt.

Dies kann bedeuten, dass im Falle eines nicht oder fehlerhaft antwortenden Webservices, eine andere Instanz des Webservices genutzt wird.

Ein Rückfall auf einen alternativen Payment-Provider sichert den Geschäftsprozess ab

Daneben sind auch andere Szenarien denkbar. So konnte die eigene Applikation einen Payment-Provider nutzen. Bei einem Ausfall könnte dies ein geschäftskritisches Problem darstellen. Als Failover-Variante kann auf einen zweiten unabhängigen Payment-Provider umgeschwenkt werden, bis der primäre Provider wieder verfügbar ist.

Ziel ist es beim Failover, die Ausfallzeiten zu minimieren und die Verfügbarkeit zu gewährleisten. Aus Sicht eines Nutzers würde ein solcher Ausfall eines Service zu keinem veränderten Ergebnis führen.

Änderung in der Applikationslogik

Eine weitere Möglichkeit innerhalb einer Applikation auf Probleme zu reagieren, ist es Änderung in der eigentlichen Logik vorzunehmen. Beispielhaft könnte von einem externen Webservice eine Route anhand gewisser Parameter geliefert werden.

Fällt dieser Service aus, könnte die Anwendung stattdessen intern eine Route mit einem vereinfachten Algorithmus berechnen. Das Ergebnis ist qualitativ nicht unbedingt mit dem des externen Service zu vergleichen, allerdings kann es aus Sicht des Nutzers trotzdem ausreichend sein, falls der Webservice nicht zur Verfügung steht.

Limiter

Eine weitere Klasse nützlicher Methodiken sind Limiter. So begrenzt ein Rate Limiter die Anzahl der Anfragen, die ein Nutzer in einem bestimmten Zeitraum senden kann. Dies ist besonders nützlich in Szenarien, in denen Systemressourcen begrenzt sind oder um versehentliche Denial-of-Service-Angriffe zu verhindern.

Daneben existieren weitere Limiter, wie der Time Limiter welcher die Zeit begrenzt, die ein bestimmter Prozess zur Ausführung nutzen kann. Wenn der Prozess die zugewiesene Zeit überschreitet, wird er abgebrochen oder eine Ausnahme wird ausgelöst. Dies kann eine Möglichkeit darstellen, Timeouts zu realisieren.

Let It Crash

Aus einer übergeordneten Sicht kann es sinnvoll sein, Services abstürzen zu lassen, wenn es zu schwerwiegenden Problemen kommt. Je nachdem, wie das System gestaltet ist, wird der Service anschließend wieder gestartet und hochgefahren.

Erlang ist ein anschauliches Beispiel für diese Let It Crash-Philosophie. Sie führt dazu, dass sobald ein Prozess auf einen Fehler stößt, dieser beendet wird, anstatt den Fehler zu beheben. Andere, überwachende Prozesse können anschließend entscheiden, wie sie auf den Absturz reagieren, oft indem sie den fehlerhaften Prozess neu starten.

Hier gibt es im Service selbst keinen selbstheilenden Code, sondern es wird sich auf die Gesamtarchitektur des Systems verlassen, welche dafür sorgt, dass der Dienst wieder neu gestartet wird oder das Problem auf andere Art und Weise behoben wird.

Hier muss darauf geachtet werden, dass die Applikationen auf diesen Fall vorbereitet sein müssen. So müssen z. B. Verbindungen wieder aufgenommen werden, nachdem der jeweilige Service wieder verfügbar ist.

Caches

Auch Caches können im Rahmen selbstheilender Anwendungen nützlich sein. Wenn eine Information nicht vom externen Service bezogen werden kann, kann unter Umständen die letzte gecachte Antwort für die Anforderung genutzt werden.

Dies ist natürlich nur in solchen Fällen möglich, in denen der Cache für die gewünschte Anfrage vorhanden ist und sichergestellt werden kann, dass die gespeicherte Antwort den Anforderungen an die benötigte Aktualität gerecht wird.

Veränderung der Servicequalität

Wer Dienste entwickelt und betreibt, kann weitere Funktionalitäten implementieren, um zumindest ein Teil eines Dienstes noch funktionsfähig zu halten. So kann ein entsprechender Service z. B. in einen Read-Only-Modus gesetzt werden, wenn Schreibzugriffe aufgrund eines Fehlers aktuell nicht funktionieren.

Da in den meisten Fällen Lesezugriffe einem Schreibzugriff überwiegen, können in einem solchen Read-Only-Modus viele der Anfragen immer noch erfolgreich beantwortet werden.

Das dahinter liegende Konzept ist es, die Funktionalität, welche noch zur Verfügung steht, dem Aufrufer zur Verfügung zu stellen, anstatt den Betrieb komplett einzustellen. So können einzelne Features im Fehlerfall abgeschaltet werden, anstatt den kompletten Service zu deaktivieren.

Allerdings müssen die aufrufenden Applikationen hierauf vorbereitet sein und damit umgehen können.

Retry

Wie bereits im Beispiel oben demonstriert, können wiederholte Versuche einen Service aufzurufen, eine Möglichkeit sein, Systeme fehlertolerant und selbstheilend zu gestalten. Dies ist vorwiegend bei Problemen temporärer Natur wie kurzzeitigen Netzwerkausfällen oder einer Überlastung nützlich.

Dieses Muster kann jedoch komplexer werden, abhängig von den Anforderungen der Anwendung. Es kann unter anderem notwendig sein, die Wartezeit zwischen den Wiederholungsversuchen zu erhöhen oder bestimmte Arten von Fehlern von den Wiederholungsversuchen auszuschließen.

Auch zu häufige Wiederholungen sollten ausgeschlossen werden, damit z. B. im Falle einer Überlastung der aufgerufene Service nicht weiter belastet wird.

Timeouts

Ein weiterer wichtiger Punkt bei selbstheilendem Code und fehlertoleranten Architekturen sollten Timeouts sein. Operationen wie Netzwerk oder IO sollten immer mit einem Timeout versehen werden, damit niemals der Fall entsteht, dass auf unbestimmte Zeit auf Ressourcen gewartet wird.

Ähnliche Verfahren lassen sich in der Theorie auch anwenden, wenn längere Berechnungen getätigt werden. In einigen Fällen ist es hier sinnvoll, einen Timeout zu definieren.

Grundsätzlich sollte es immer das Ziel sein, endlose Warteschleifen zu vermeiden und Systemressourcen wie CPU oder Speicher wieder freizugeben. Auch erhält die Anwendung durch Timeouts eine gewisse Art an Kontrolle, da durch diese klar wird, wie lange bestimmte Prozesse maximal laufen dürfen.

Aus Sicht des Nutzers sind Timeouts hilfreich, da dieser nicht unnötige Wartezeiten in Kauf nehmen muss und eine zeitnahe Rückmeldung erhält, wenn auch im schlechtesten Fall in Form einer Fehlermeldung.

Ein interessanter Nebeneffekt ist, dass Timeouts teilweise zur Fehlersuche genutzt werden können. Wenn bestimmte Anforderungen ständig zu Timeouts führen, könnte dies auf ein tiefer liegendes Problem hinweisen, das analysiert werden sollte.

Tooling

Viele der beschriebenen Mechanismen können von Grund auf vom Entwickler implementiert werden. Allerdings existieren eine Reihe von Bibliotheken und Frameworks welche einen Teil dieser Arbeit abnehmen.

In der Java-Welt liefern Frameworks z. B. Spring Boot, Möglichkeiten für eine robuste Fehlerbehandlung. Bibliotheken, wie Resilience4j, bieten Lösungen für Selbstheilungsfunktionen und Fehlertoleranz. Sie ermöglicht es Entwicklern, selbstheilende Muster zu implementieren, wie Circut Breaker oder Fallback-Mechanismen, um Ausfälle effektiv zu behandeln.

Damit wird es einfacher und bequemer, selbstheilenden Code zu implementieren.

Self Healing Code in der Zukunft

Neben den klassischen Methoden, um selbstheilenden Code zu realisieren, werden in letzter Zeit immer mehr Varianten von Self Healing Code in Verbindung mit generativer KI postuliert, wie dem Large Language Model GPT-4.

Während die bisherigen Beispiele selbstheilender Systeme auf die Laufzeit abzielten, existieren auch Verfahren und Ideen, generative KI zu Nutzung bei der Entwicklung einzusetzen, um Quellcode „ohne Mitwirkung des Entwicklers“ zu realisieren.

Mittelfristig sind Systeme im breiten Einsatz denkbar, welche die Codebasis eines Projektes analysieren und basierend darauf Änderungen generieren, welche anhand von Pull-Requests dem menschlichen Entwickler vorgeschlagen werden können.

Ein Workflow zur Erzeugung automatisierter Änderungen via LLM

Damit bei den automatisiert erstellten Änderungen möglichst sichergestellt wird, dass sie auch funktionieren, können die Änderungen durch eine Continuous Integration-Pipeline entsprechenden Tests unterworfen werden. Nur wenn die Pipeline erfolgreich durchläuft, werden die Änderungen dem Entwickler vorgeschlagen.

So nutzt Microsoft mit InferFix ein System zur semiautomatischen Fehlerbehebung, um den Arbeitsablauf für interne Projekte zu verbessern. Auch andere Firmen, wie Stackoverflow, denken ebenfalls über die Nutzung von LLMs und generativer KI im Rahmen der Softwareentwicklung nach.

Automatisiertes Debugging

Solche „selbstheilenden Fähigkeiten“ können auch für die komplett automatische Fehlerbehebung genutzt werden. So existiert mit Wolverine ein Proof of Concept für ein solches System. Wolverine nutzt GPT-4 von OpenAI, um Fehler in einem Python-Skript zu reparieren.

Dabei werden Fehler im Skript in das Sprachmodell gegeben und anschließend die Lösung auf den Quelltext angewendet. Danach wird ermittelt, ob das Skript nach der Änderung funktioniert. Treten erneut Fehler auf, werden diese wieder an das LLM übermittelt und dessen Lösung wieder in das Skript übernommen.

Solche Verfahren könnten weitergedacht und direkt beim Nutzer, im Falle eines Fehlers, ausgeführt werden.

Auch in IDEs ziehen Plugins basierend auf generativer KI ein, wie das AI Assistant-Plugin von Jetbrains. Mit diesem können Fehlermeldungen und Codeteile analysiert und erklärt und eine weitere Interaktion mit den Sprachmodellen durchgeführt werden. Dazu zählen unter anderem das Generieren von Dokumentation, sowie von Namen.

Probleme

Im Idealfall können solche Systeme eine Arbeitserleichterung sein, allerdings führen sich auch zu Problemen. So ist nicht sichergestellt, dass die von der KI gefundenen Lösungen wirklich die geforderten fachlichen Spezifikationen erfüllen. Daneben kann sich die Codequalität verschlechtern, wenn solche Änderung ungeprüft übernommen werden.

Hier könnte es im Laufe der Zeit vorkommen, dass aus Bequemlichkeit dazu übergegangen wird, solche Änderungen automatisiert auf den Quellcode anzuwenden.

Auf lange Sicht kann dies dazu führen, dass die eigene Codebasis immer schlechter verstanden wird, wenn diese generativer KI „gepflegt“ wird und diese Änderungen ohne ein sinnvollen Reviewprozess übernommen werden. Es ist denkbar, dass sich die Verantwortlichkeit von der eigentlichen Implementation des Quellcodes immer mehr in Richtung des Reviews verschiebt.

Wenn es an den Einsatz generativer KI geht, müssen neben solchen Fragen auch datenschutzrechtliche und sicherheitstechnische Aspekte bedacht werden.

Auch sollte beachtet werden, dass generative KI, wie die meistgenutzten Modelle von OpenAI Kosten verursachen, welche meist je Token abgerechnet werden. Werden lokale Modelle genutzt, muss stattdessen Rechenleistung und dahinterstehende Infrastruktur bereitgestellt werden.

Daneben existieren Größenbeschränkungen. Modelle wie solche von OpenAI sind bezüglich der maximal verarbeitbaren Token beschränkt, sodass größere Quelltext auf diese Art und Weise nur schwer am Stück analysiert werden können.

In Bezug auf selbstheilenden Code und Systeme kann ein blindes Vertrauen zu erheblichen Problemen führen.

Beispielhaft könnte ein System nur bestimmte Datentypen verarbeiten. Wenn ein solches Datenfeld vom Typ Integer ist und der Nutzer nun stattdessen Zeichenketten sendet, würde die Anwendung dies ablehnen. In einem solchen Fall könnte ein auf KI basierendes System zur Behebung dieses Fehlers den Typ der Schnittstelle, so ändern, dass auch Zeichenketten erlaubt sind und somit weiteren Problemen die Tür öffnen.

Fazit

Self Healing Code bietet eine Reihe von Vorteilen, im Betrieb der Anwendungen und sollte beim Design entsprechender Applikationen und Systeme berücksichtigt werden.

So sind diese Systeme zuverlässiger, bieten erhöhte Verfügbarkeit, und verringern eventuelle Downtimes. Auch in der Wartung können solche Systeme günstiger sein.

Allerdings sollten die Schwierigkeiten bedacht werden. Die Entwicklung von selbstheilendem Code kann komplex sein. Es kann eine Herausforderung darstellen, effektive Mechanismen zur Fehlererkennung, Diagnosealgorithmen und Strategien zur Fehlerbehebung zu entwickeln, die reibungslos miteinander interagieren.

Daneben bedeutet Self Healing Code in vielen Fällen auch ein Overhead. Unter Umständen werden zusätzliche Systemressourcen, für die Erkennung und die Beseitigung von Problemen, benötigt.

Wenn fälschlicherweise Fehler erkannt werden und die selbstheilenden Mechanismen aktiv werden, kann dies problematisch sein. Dazu gehören die Schwierigkeit, solche Systeme zu testen und zu überprüfen, und die Möglichkeit, dass das System unvorhersehbare oder unerwünschte Änderungen vornimmt.

Neben dem klassischen selbstheilenden Code hält generative KI immer mehr Einzug in unseren Alltag und dies wird auch in Verbindung mit Self Healing Code keine Ausnahme sein. Allerdings sollte hier Vorsicht geboten sein und der Mensch nicht aus dem Loop genommen werden.

Self Healing Code hat das Potenzial, die Zuverlässigkeit und Verfügbarkeit von Systemen zu verbessern und dieses Potenzial sollte nicht brach liegen gelassen werden.

Coding Conventions

Die Entwicklung von Software zeichnet sich in der heutigen Welt oft dadurch aus, dass sie unter Mitwirkung unterschiedlichster Entwickler bewerkstelligt wird. Im Rahmen einer solchen Entwicklung kommt es darauf an, bestimmte Standards und Best Practices einzuhalten.

Neben dem passenden Workflow kommen hier Coding Conventions zum Tragen und bilden einen wichtigen Baustein um Quelltext effizienter, lesbarer und zuverlässiger zu gestalten.

Was sind Coding Convention?

Eine Coding Convention definiert sich über bestimmte Stilregeln und Best Practices, bezogen auf eine Programmiersprache. Innerhalb der Konvention werden viele Aspekte der Programmiersprache und ihrer sprachlichen Elemente behandelt. Dies fängt bei Regeln zur Formatierung an, führt sich fort mit der Benamung von Variablen und anderen Strukturen und erstreckt sich auch auf andere Bereiche, wie Reihenfolgen und Zeilenlängen.

Warum werden sie benötigt?

Nun kann sich natürlich die Frage gestellt werden, warum eigentlich Coding Conventions benötigt werden?

Neben offensichtlichen Gründen, dass sie vielleicht eine Anforderung des Kunden sind, gibt es auch andere Gründe für diese Konventionen. So werden die meisten Projekte nicht von einer einzelnen Person betreut und für die Entwickler eines Produktes ist es einfacher, wenn der Quelltext nach identischen Standards entwickelt wurde. Dies ermöglicht eine schnellere Einarbeitung und hilft auch bei anderen Dingen, wie der Verminderung von Merge-Konflikten bei der Arbeit mit Versionskontrollsystemen.

Damit tragen diese Konventionen dazu bei, die Zusammenarbeit zwischen Entwicklern zu erleichtern, indem sie eine einheitliche und konsistente Basis schaffen.

Eine Welt ohne Coding Conventions

Natürlich können Programme auch ohne Coding Conventions geschrieben werden. Dies kann zu interessanten Programmen führen:

#include 

...

yeet Yeet Yeeet yeeeT 
Yeeeet
yEet yEEt yeEt yyeet yeett yeetT
yeeT yet yeetT
yeeeeT

Bei diesem Programm stellen sich bei der Betrachtung mehrere Fragen. In welcher Sprache ist es geschrieben? Ist es überhaupt lauffähig? Und was ist der eigentliche Zweck des Quelltextes?

In diesem Beispiel wurde das C-Programm so gestaltet, dass es möglichst unlesbar ist, indem mit entsprechenden Definitionen gearbeitet wurde, welche anschließend im Quelltext genutzt werden.

#define yeet int
#define Yeet main
#define yEet std
#define yeEt cout
#define yeeT return
#define Yeeet (
#define yeeeT )
#define Yeeeet {
#define yeeeeT }
#define yyeet <<
#define yet 0
#define yeett "Yeet!"
#define yeetT ;
#define yEEt ::

Es zeigt auf, dass ohne einheitliche Coding Conventions im besten Fall Chaos droht. Auf die Spitze treibt das auch der International Obfuscated C Code Contest, bei welchem es darum geht, Quelltext möglichst so zu verschleiern, dass nur schwer zu erraten ist, welche Funktion dieser am Ende in sich trägt.

Eine Implementation des zcat-Kommandos

In diesem Beispiel wird der Befehl zcat zur Darstellung mittels gz-komprimierter Daten implementiert. Auch ohne solche Extrembeispiele würde in einer Welt ohne Coding Conventions eine Menge an inkonsistentem Code entstehen:

int counterServer = 1               ;
int counterClient = 2               ;
int counterDevice = 3               ;
int test1 = 4                       ;

Natürlich kann ein Quelltext so formatiert werden, aber in den meisten Fällen erschwert dies die Lesbarkeit des Quelltextes enorm. Auch die Nutzung von Whitespaces und falscher Einrückung kann zu Problemen führen:

if        (system==true) {
    doSomething()        ;
doFoobar                       ();
}

Auch Richtlinien über Komplexität sind ein wichtiger Bestandteil, solcher Konventionen. Gegeben sei folgendes Programm:

#include

main(){
  int x=0,y[14],*z=&y;*(z++)=0x48;*(z++)=y[x++]+0x1D;
  *(z++)=y[x++]+0x07;*(z++)=y[x++]+0x00;*(z++)=y[x++]+0x03;
  *(z++)=y[x++]-0x43;*(z++)=y[x++]-0x0C;*(z++)=y[x++]+0x57;
  *(z++)=y[x++]-0x08;*(z++)=y[x++]+0x03;*(z++)=y[x++]-0x06;
  *(z++)=y[x++]-0x08;*(z++)=y[x++]-0x43;*(z++)=y[x]-0x21;
  x=*(--z);while(y[x]!=NULL)putchar(y[x++]);
}

Bei diesem handelt es sich um ein einfaches Hello World-Programm, aber das Verständnis wird durch die Umsetzung, genauer gesagt dessen unnötige Komplexität, sehr erschwert.

Auch wenn sich auf Einrückungen geeinigt wird, ist dies nicht immer sinnvoll:

function f() {
  doThings();
  doMoreThings();
             }

Bei diesem Beispiel wird eine Einrückung genutzt, welche ungebräuchlich ist und bei den meisten Entwicklern wahrscheinlich auf Ablehnung stoßen wird und nicht dazu führt, dass der Quelltext übersichtlicher wird.

Die Benamung von Elementen ist ein wichtiger Teil von Coding Conventions:

void doSomeTHING() {
  int test1 = 1;
  int TEST2 = 2;
  int teST3 = 3;
}

void DoSomething() {
  int tEST4 = 4;
}

Wird bei dieser nicht auf Konsistenz geachtet, trägt dies nicht zum besseren Verständnis bei. Auch Kommentare, bzw. das Schreiben derselben sind eine Aufgabe, bei der sorgfältig gearbeitet werden sollte:

try {
  ...
} catch(Exception e) {
  // Gotta Catch 'Em All
}

Natürlich ist Humor im echten Leben wichtig, aber in einem Quelltext sollte er nichts zu suchen haben. Stattdessen sollte sich hier auf die Fachlichkeit bezogen werden.

Auch die Nutzung unüblicher Vorgehensweisen bzw. das Verstecken bestimmter Operationen erschwert das Verständnis eines Quelltextes:

int main() {

  String helloWorld = "Hello World!";
  cout << helloWorld << endl;

  String hello = (helloWorld, 5);
  cout << hello << endl;

  system("pause");
  return 0;
}

Ohne weitere Informationen ist es relativ schwer herauszufinden, was in diesem Beispiel passiert. Hier werden die ersten fünf Stellen der Zeichenkette Hello World! zurückgegeben. In diesem Fall geschieht dies über die Überladung des Komma-Operators:

using namespace std;

#define String string

String operator,(String lhs, int rhs) {
  lhs.erase(lhs.begin() + rhs, lhs.end());
  return lhs;
}

Auch eine schlechte Benennung und ein Sprachmischmasch kann das Verständnis des Quelltextes erschweren:

#include 

gibHalloWeltAus()
{
    // use cout for output
    cout << "Hello World!" << endl;

    // Rückgabereturn
    return 0;
}

Ziele von Coding Conventions

Wenn sich diese Beispiele aus der Welt ohne Coding Conventions angeschaut werden, können aus diesen einige Ziele für entsprechende Konventionen abgeleitet werden.

Es geht darum, dass Coding Conventions bewährte Praktiken abbilden und für einen lesbaren und verständlichen Quelltext sorgen. Sie sollen die Zusammenarbeit im Team erleichtern und eine gewisse Einheitlichkeit herstellen.

Daneben sind Coding Conventions und das Konzept von Clean Code miteinander verbunden. Clean Code ist ein Konzept, das sich auf die Softwareproduktion und das Programmierdesign bezieht. Es legt fest, dass Quelltext so geschrieben werden sollte, dass er einfach zu lesen, zu verstehen und zu warten ist. Die Einhaltung von Coding Conventions kann dazu beitragen, diese Kriterien einzuhalten.

Elemente von Coding Conventions

Doch woraus genau bestehen Coding Conventions im Einzelnen? Im ersten Schritt sollte sich bewusst gemacht werden, dass sich solche Konventionen von Sprache zu Sprache unterscheiden. Auch wenn sich im Laufe der Zeit einige Standards herauskristallisiert haben, können diese nicht immer eins zu eins auf die eigenen Anforderungen angewendet werden.

Unterschiedliche Elemente von Coding Conventions

Im Einzelnen setzen sich Coding Conventions aus Elementen zusammen, welche im folgenden genauer besprochen werden sollen.

Benamung

Ein essenzielles Element ist die Benamung innerhalb eines Entwicklungsprojektes. Dies fängt bei Dateinamen und Verzeichnissen an, zieht sich hin zu Bezeichnern, wie den Namen von Variablen, Klassen und vielen anderen Elementen.

Grundsätzlich sollte bei der Benamung von Elementen immer so viel wie nötig und so wenig wie möglich benannt werden.

Dateinamen

Da Coding Conventions sich von Sprache zu Sprache unterscheiden, existieren bereits Unterschiede auf Ebene der Dateinamen. Während Dateien von C-Programmen meist in Kleinschreibung benannt werden:

main.c
tilerenderer.c

sieht dies bei Java-Applikationen anders aus:

Main.java
TileRenderer.java

Neben den Dateinamen bezieht sich dies auch auf die Benamung und Struktur von Verzeichnissen. In C würde dies wie folgt aussehen:

src
  engine
  renderer
  utils

während in Java meist die Struktur des Packages abgebildet wird. Bei dem Package com.example.transformer.html würde die entsprechende Verzeichnisstruktur wie folgt aussehen:

src
  main
    java
      com
        example
          transformer
            html
            markdown
  test

Eine weitere Eigenart von Java ist, dass die Namen der Packages eine Domain-Struktur abbilden und z. B. mit der Domain der Firma beginnen.

Neben den Coding Conventions für die jeweilige Sprache gehen bei der Strukturierung des Projektes auch noch andere Aspekte ein. Wird z. B. mit dem Build-Werkzeug Maven gearbeitet, so gilt dort Konvention vor Konfiguration.

Bei Maven bedeutet dies, dass eine Reihe von Standardregeln existieren, die vom Benutzer des Werkzeuges befolgt werden müssen, um ein Projekt erfolgreich zu erstellen. So muss ein Projekt in einer bestimmten Struktur organisiert sein, damit Maven es erfolgreich verarbeiten kann. Diese Standards erleichtern es, ein Projekt mit Maven zu erstellen, da der Benutzer nicht jeden einzelnen Schritt konfigurieren muss.

Sprechende Namen

Auch bei der Benamung sollten gewissen Standards eingehalten werden:

int a = getSum();

In diesem Fall wird eine Methode mit dem Namen getSum aufgerufen und das Ergebnis in der Variable a gespeichert. Hier sollte mit sprechenden Namen gearbeitet werden. Solche Namen zeichnen sich dadurch aus, dass sie beim Lesen bereits Aufschluss über ihre Fachlichkeit und deren Bedeutung geben:

int sum = getSum();

Damit wird klar, dass sich in der Variable sum eine entsprechende Summe befindet. Theoretisch kann die Benennung natürlich noch weiter spezifiziert werden:

int sumArticles = getSum();

Unter Umständen können Namen hierbei etwas länger werden, aber dafür wird Klarheit gewonnen. Diese Art der Benamung sollte nicht nur für Variablen, sondern generell für Bezeichner, wie Klassennamen gelten.

Allerdings keine Regel ohne Ausnahme, z. B. bei Exceptions unter Java:

try {
  // Try some funky stuff
} catch(Exception e) {
  // Handle exception
}

Dort hat es sich eingebürgert, einer Exception den Namen e bzw. ex zu geben. Sind solche Konventionen vorhanden und weitverbreitet, sollten diese entsprechend eingehalten werden. Auch hier dient das Einhalten dieser Regeln dazu, die Lesbarkeit und Wartbarkeit des Quelltextes zu erhöhen.

Verbotene Bezeichner

Es gibt eine Reihe von Bezeichnungen, welche in der Theorie, je nach verwendeter Sprache, verwendet werden können, es aber nicht sollten.

So ist es in Sprachen wie C# möglich, mit einem vorgestellten At-Zeichen Schlüsselwörter der Sprache als Bezeichner verwenden zu können. Um Verwirrung und darauf aufbauende Probleme zu vermeiden, sollte dies unterlassen werden.

Andere Bezeichner, wie handle, sollten nur in einem eng begrenzten Kontext oder einer entsprechenden Fachlichkeit benutzt werden.

Auch die Nutzung von Variablen mit dem Namen temp oder tmp sollte unterlassen werden, da meist eine entsprechend sinnvollere fachliche Benamung möglich ist.

Schleifen und Benamung

Wie bei Exceptions haben sich auch bei Schleifen bestimmte Konventionen zur Benamung eingebürgert, an welche sich gehalten werden sollte:

for(int i = 0; i < 10; i++) {

    for(int j = 0; j < 10; j++) {

      // Do stuff
    }
}

So wird die Zählervariable bei Schleifen mehrheitlich mit dem Namen i benannt und wenn in der Schleife weitere Schleifen geschachtelt werden, so werden diese fortlaufend mit j, k und so weiter benannt.

Aber auch hier kann in Ausnahmen davon abgewichen werden. Ein Beispiel hierfür wäre z. B. die Verarbeitung eines Bildes:

for(int y = 0; y < image.height; y++) {

    for(int x = 0; x < image.width; x++) {

      // Do image stuff
    }
}

Hier wird sich auf die x- und y-Achse des Bildes bezogen und durch die entsprechende Benamung kann sinnvoll mit diesen in der eigentlichen Logik der Schleife gearbeitet werden.

Kamele, Dromedare und Schlangen

Bezeichner können wie bei obigem Beispiel einfache Namen bestehend aus einem Wort sein, bestehen aber in vielen Fällen aus mehreren Wörtern.

Unterschiedlichste Schreibvarianten bei zusammengesetzten Bezeichnern

Um diese sinnvoll miteinander zu verbinden werden je nach Sprache unterschiedliche Varianten von Binnenmajuskeln benutzt, welche je nach Verwendung treffende Namen wie CamelCase und Ähnliche tragen. Diese Schreibweise sorgt letztlich für eine bessere Lesbarkeit, da sie einzelne Wörter sinnvoll voneinander abgrenzt.

Binde- und Unterstriche

Neben der Schreibweise mittels Binnenmajuskeln existieren auch andere Schreibweisen, was sich im Beispiel wie folgt darstellt:

do_things_fast();
do-things-fast();

So wird in Sprachen wie C und Perl auch auf Unterstriche zurückgegriffen und auch in PHP war dies bis zur Version 4 der Fall. Die Schreibweise mit dem Bindestrich, welche auch als lisp-case bekannt ist, wurde unter anderem in COBOL und Lisp genutzt.

Auch bei Rust wird teilweise auf Unterstriche als auch auf CamelCase gesetzt.

Ausnahmen bei der Benamung

Je nach Sprache wird damit meist eine bestimmte Schreibweise für Bezeichner wie den Namen von Variablen genutzt, allerdings existieren hiervon auch Ausnahmen bzw. Abweichungen, wie bei der Definition von Konstanten:

public static final String SECRET_TOKEN = "X7z4nhty3287";

Diese werden in vielen Fällen komplett großgeschrieben und meist mit Unterstrichen unterteilt. Auch hier gilt wieder, dass solche Konstanten möglichst sprechend benannt werden sollten und auf Abkürzungen und Ähnliches verzichtet werden sollte.

Prä- und Suffixe

In der Vergangenheit wurden an Bezeichner teilweise Prä- und Suffixe mit angetragen. Begründet war dies mit den damaligen Compilern und der fehlenden Unterstützung in der Entwicklungsumgebung. Durch die Nutzung eines Präfixes konnte so z. B. der Typ einer Variable aus dem Namen ermittelt werden.

Die sicherlich bekannteste Notation ist die Ungarische Notation. Hier werden die Bezeichner aus einem Präfix für die Funktion, einem Kürzel für den Datentyp und einem Bezeichner zusammengesetzt.

Ein Beispiel für einen solchen Namen wäre die Variable idValue, welche anzeigt, dass es sich um einen Index vom Typ Double handelt, welcher den Namen Value trägt.

Mittlerweile wird diese Notation in der Praxis nur noch selten genutzt. Auch Linus Torvalds hatte sich dazu geäußert:

Encoding the type of a function into the name (so-called Hungarian notation) is brain damaged – the compiler knows the types anyway and can check those, and it only confuses the programmer.

Neben der besseren Unterstützung der IDEs gibt es andere Gründe, welche gegen eine Nutzung der ungarischen Notation sprechen. So kann z. B. bestehender Quelltext schlechter migriert werden, wenn sie die Namen nicht ändern dürfen, aber die Typen dies tun. Dies war z. B. der Fall bei der Umstellung der WinAPI auf eine 64-Bit fähige API, bei dem Namen nun nicht mehr auf den korrekten Datentyp hinweisen.

Einrückungen

Neben der Benennung von Bezeichnern ist auch die Einrückung ein unter Umständen recht emotionales Thema.

Dabei geht es hauptsächlich darum, ob Leerzeichen oder Tabulatoren für die Einrückungen genutzt werden. Aus pragmatischer Sicht sollte hier insbesondere die Mischung dieser beiden Varianten verhindert werden.

Für Leerzeichen spricht, dass die Einrückungen bei allen Nutzern identisch aussehen. Im Gegensatz zu Tabulatoren benötigen Leerzeichen, mehr Speicher. Vier Leerzeichen belegen 4 Byte, ein Tabulator nur ein Byte.

Bei Tabulatoren kann der Einzug in der Entwicklungsumgebung individuell konfiguriert werden, was aber gleichzeitig den Nachteil ergibt, dass der Quelltext bei unterschiedlichen Mitarbeitenden anders aussehen kann.

Persönlich würde der Autor an dieser Stelle immer Leerzeichen empfehlen. Damit ist ein Quelltext gewährleistet, welcher bei jedem Entwickler identisch aussieht. Der zusätzliche Speicherbedarf kann hierbei vernachlässigt werden.

Einrückungstiefen

Bei der Frage der Leerzeichen stellt sich auch die Frage, mit wie vielen Leerzeichen soll ein Block eingerückt werden. Hier ergibt sich die Möglichkeit, dies mit zwei Leerzeichen je Block zu machen:

void main() {
  doSomething();
}

Der Standard bei vielen Projekten sind hingegen vier Leerzeichen:

void main() {
    doSomething();
}

Allerdings sind auch acht Leerzeichen gebräuchlich, z. B. beim Linux-Kernel. Wirklich bemerkbar wird dies allerdings erst dann, wenn mehrere Blöcke ineinander verschachtelt werden:

void main() {

    for(int i = 0; i < 10; i++) {

        for(int j = 0; j < 10; j++) {

            doSomething();
        }
    }
}

Je nach Ausgabeformat, z. B. beim Ausdruck oder in Präsentationen ist es sinnvoll auf zwei Leerzeichen zu setzen, aber im Allgemeinen sollten vier Leerzeichen genutzt werden.

Whitespaces und Leerzeilen

Neben der Einrückung sind auch die Whitespaces im Quelltext selbst, sowie Leerzeilen ein Element zur Strukturierung des Quelltextes.

Leerzeilen stellen ein wichtiges Element zur Strukturierung dar. Natürlich kann ein Quelltext ohne Leerzeilen geschrieben werden und leider ist dies in der Praxis oft zu sehen. Sinnvoll ist es aber, den Quelltext etwas weiträumiger zu gestalten:

int getResult(int a, int b) {

    int sum = getSum();
    int ret = 0;

    for(int i = 0; i < 10; i++) {
        ret += sum;
    }

    return ret;
}

Die Trennung einzelner Bestandteile des Quelltextes durch Leerzeilen sollte anhand der funktionalen Blöcke bzw. nach der Fachlichkeit vorgenommen werden.

Neben den Leerzeilen, sind auch Whitespaces ein essenzieller Teil der Formatierung eines Quelltextes. Whitespaces definieren sich allgemein als Leerstellen in Text, Code oder Schrift, die zwischen Zeichen, Wörtern, Zeilen oder Absätzen liegen. In der Programmierung werden Whitespaces auch als Formatierung verwendet, um den Quelltext leserlicher zu machen und den Code übersichtlicher zu strukturieren.

Whitespaces verbessern die Sichtbarkeit und das Verständnis der Syntax:

int sum=a+b;

for(int i=0;i<10;i++) {
    doSomething();
}

Bei diesem Beispiel wäre es wesentlich sinnvoller, Leerzeichen zum Strukturieren zu nutzen und dem Quelltext eine gewissen Luftigkeit zu geben:

int sum = a + b;

for(int i = 0; i < 10; i++) {
    doSomething();
}

Dies erhöht die Lesbarkeit und sorgt letztlich für ein besseres Verständnis. Natürlich kann auch an dieser Stelle übertrieben werden:

for ( int i = 0; i < 10; i++ ) {
    doSomething ( ) ;
}

So werden hier auch Leerzeichen rund um die Klammern gesetzt, was im Normalfall nicht sonderlich hilfreich ist und deshalb unterlassen werden sollte.

Blockklammern

In vielen Programmiersprachen wird mit Blöcken gearbeitet. Ein Block definiert sich als eine Gruppe von Anweisungen, die als eine Einheit behandelt werden. So wird über den Block z. B. der Gültigkeitsbereich von Variablen definiert. Ein Block beginnt normalerweise mit einer öffnenden geschweiften Klammer und endet mit einer schließenden Klammer gleichen Typs.

Beispielsweise kann ein Block zu einer if-Anweisung gehören, in der eine Reihe von Anweisungen ausgeführt werden, wenn die Bedingung wahr ist. Hier kann natürlich die Frage nach der Notwendigkeit gestellt werden, wie in diesem Stück Java-Code:

if(something == true)
    doFooBar();

So würde dieses Beispiel ohne Probleme kompilieren und wenn die Bedingung zutrifft, die Methode doFooBar aufgerufen werden. Problematisch wird dieses Konstrukt allerdings dann, wenn der Quelltext an dieser Stelle erweitert wird:

if(something == true)
    doAnotherThing();
    doFooBar();

Nun würde nur noch die Methode doAnotherThing ausgeführt werden. Die andere Methode hingegen nicht mehr. Aus dem Quelltext ist dies allerdings nicht ohne Weiteres ersichtlich. Aus diesem Grund sollte immer mit Blockklammern gearbeitet werden, auch wenn nur eine einzelne Anweisung folgt:

if(something == true) {
    doFooBar();
}

Dadurch werden Fehler vermieden und die Intention des Quelltextes wird sofort ersichtlich.

Position der Klammern

Für die Positionierung der geschweiften Blockklammern gibt es in der Praxis zwei verbreitete Varianten, diese zu setzen. Bei der ersten Variante sind sie beide auf der gleichen Ebene zu finden:

boolean get()
{
    int a = 7;
    int b = 42;

    int result = doFooBar(7, 42);

    if(result == 23) 
    {
        return false;
    }

    return true;
}

Der Vorteil an dieser Variante ist, dass sofort zu sehen ist, wo ein Block beginnt und wo sich die entsprechende schließende Klammer des jeweiligen Blockes befindet. Als Nachteil wird bei dieser Variante oft aufgeführt, dass damit etwas Platz verschwendet wird.

Bei der anderen gebräuchlichen Variante wird die öffnende Klammer eines Blockes direkt hinter die Anweisung gesetzt, welche zum öffnenden Block gehört:

boolean get() {

    int a = 7;
    int b = 42;

    int result = doFooBar(7, 42);

    if(result == 23) {
        return false;
    }

    return true;
}

Dies erschwert zwar die Zuordnung zwischen dem Beginn des Blockes und dem Ende, allerdings zeigen die meisten modernen IDEs diese Zuordnung prominent an.

In der Theorie wird bei dieser Variante eine Zeile eingespart, allerdings ist es sinnvoll nach der öffnenden Blockklammer eine Leerzeile zu setzen, um die Übersichtlichkeit zu erhöhen.

Häufig wird noch ein Unterschied zwischen einzeiligen und mehrzeiligen Blöcken gemacht:

if(something == true) {
    doFooBar();
}

Dort wird die Leerzeile weggelassen, während sie bei mehrzeiligen Blöcken immer eingefügt wird:

if(something == true) {

    doFooBar();
    doSomething();

    for(int i = 0; i < 10; i++) {
        doThings();
    }    
}

Blöcke per Einrückung

Neben Sprachen mit solchen Blockklammern existieren auch Sprachen wie Python, welche andere Wege zur Strukturierung von Blöcken nutzen:

import sys
import random

running = True

while running:

    randomNumber = random.randint(0,8)

    if randomNumber == 0:
        break;
        
    else:
        print(randomNumber)

Hier wird die Zuordnung zu einem Block über die entsprechende Einrückung vorgenommen. Damit entfällt die Frage nach der Position der Blockklammern.

Reihenfolgen

In vielen Programmiersprachen gibt es Schlüsselwörter, wie Modifikatoren für die Sichtbarkeit. Für diese empfiehlt es sich auch eine entsprechende Reihenfolge zu definieren und diese einzuhalten.

Am Beispiel von Java wäre dies die Sichtbarkeit, dann eine eventuelle static-Definition gefolgt von einer final-Definition und am Ende der eigentlichen Definition:

public int a = 7;
public final int b = 24;
public static final int c = 42;

Auch bei Systemen zur statischen Codeanalyse, wie Sonarlint, sind solche Regeln hinterlegt.

Reihenfolge im Quelltext

Neben den Namen der Bezeichnern sind je nach Sprache auch bestimmte Reihenfolgen der einzelnen Elemente gewünscht. Unter Java ist dies vornehmlich folgende Reihenfolge: Konstanten, private Variablen, private Methoden, Getter und Setter und anschließend öffentliche Methoden.

Allerdings kann es valide sein, Public-Methoden und Private-Methoden zusammenzuhalten, wenn diese z. B. nach Funktionalität gruppiert sind.

Zeilenlänge und Umbrüche

Früher gab es relativ strenge Regeln, was die maximale Zeilenlänge innerhalb eines Quelltextes anging. Meist waren dies 80 Zeichen pro Zeile, bedingt durch die 80 Spalten in der Hollerith-Lochkarte von IBM. Daneben haben sich mittlerweile Zeilenlängen von 80 über 100 bis zu 120 Zeichen pro Zeile eingebürgert.

Auch in Zeiten größerer Bildschirme und höherer Auflösungen, sollten Zeilen trotzdem nicht unendlich lang gestaltet werden, sondern mit Zeilenumbrüchen gearbeitet werden. Für solche Umbrüche existieren unterschiedliche Variante, welche in gewisser Hinsicht Geschmacksache sind.

public int calculate(int valueA,
                     int valueB,
                     int valueC,
                     int valueD,
                     int valueE,
                     int valueF,
                     int valueG) {
    return 0;
}

Grundsätzlich sollten keine Umbrüche mitten in einer Parameterliste vorgenommen werden, sondern die Parameter einzeln umgebrochen werden. Auch bei Fluent Interfaces wird mit Zeilenumbrüchen gearbeitet:

CarBuilder carBuilder = new CarBuilder()
        .withWheels(4)
        .withEngine(400, Fuel.DIESEL)
        .withWindows(5)
        .build();

Die Umbrüche verbessern, richtig eingesetzt, die Lesbarkeit und Verständlichkeit des Quelltextes.

Kommentare

Für einen verständlichen Quelltext sind in vielen Fällen Kommentare in diesem nötig und wichtig.

Je nach Sprache werden unterschiedliche Möglichkeiten für Kommentare bereitgestellt. Vorwiegend sind dies Zeilenkommentare und Blockkommentare.

Blockkommentare sind eine Reihe von Kommentaren, die durch ein vorangestelltes /* und ein abschließendes */ angezeigt werden, sodass mehrere Zeilen Text zusammen kommentiert werden können. Zeilenkommentare sind Kommentare, die nur eine einzelne Zeile betreffen und mit // beginnen. Sie können am Ende einer Codezeile oder auf einer eigenen Zeile platziert werden. Beide Kommentartypen sind nützlich, um das Verständnis des Codes zu erleichtern, indem sie Erklärungen zu bestimmten Codeabschnitten bereitstellen.

In den meisten Fällen sollten innerhalb eines Quelltextes den Zeilenkommentaren der Vorrang eingeräumt werden, entweder zum Auskommentieren von Quellcode oder zum Dokumentieren innerhalb des Codes:

// Create system temporary directory
Path tmpdir = null;

// log.error(tmpdir);

Block-Kommentare werden oft für die Dokumentation von Methoden, z. B. mittels JavaDoc genutzt:

/**
 * This method returns an Optional that holds a String containing
 * the file extension of the passed filename.
 * @param filename The file name whose extension is to be determined.
 * @return Optional filled with a String with the file extension if 
 * the file has an extension, or an empty optional if it has no extension.
 */

Grundsätzlich gilt bei Kommentaren, dass sie fachlicher Natur sein sollten und dass nicht unnötig kommentiert wird. Als Sprache bietet sich hier wie bei der Benamung von Bezeichnern Englisch als kleinster gemeinsamer Nenner an. Unnötige Kommentare sollten vermieden werden:

// Calculate sum and store in sum
int sum = getSum(a, b);

Der Inhalt des Kommentars ergibt sich bereits aus der sprechenden Bezeichnung der Variablen und der dazugehörigen Methode, sodass dies nicht noch einmal mit einem Kommentar untermauert werden muss.

Interessanter wäre es hier, wenn der Kommentar noch etwas zur Fachlichkeit beiträgt:

// Calculate sums of base articles
int sum = getSum(a, b);

Auch das beliebte Auskommentieren von Code wird mittels der Sprachmittel des Kommentars ermöglicht. Im Normalfall sollte auskommentierter Quellcode am Ende immer entfernt werden und nicht im Quelltext verbleiben.

Allgemeine Regeln

Neben Regeln für spezielle Konstrukte existieren eine Reihe von allgemeinen Regeln, welche auch in Coding Conventions Einzug gefunden haben.

So gilt, dass pro Zeile genau eine Anweisung bzw. ein Statement kodiert wird, eine Funktion bzw. eine Methode genau eine Aufgabe erledigen und Klassen und Methoden eine gewisse Größe nicht überschreiten sollten.

Bei Klassen definiert sich hier meist eine maximale Größe von 2000 Zeilen, während bei Methoden gerne gesagt wird, dass eine Methode als Ganzes auf den Bildschirm passen sollte.

Aufgaben für Methoden

Auch die Beschränkung von Methoden auf eine Aufgabe ist eine sinnvolle Regel. So verheißt eine Methode mit dem Namen doItAll() schon wenig Gutes. Hingegen definiert folgende Methode:

int getSum(int a, int b)

schon anhand ihres Namens klar, welche Aufgabe sie wahrnimmt und mit welchem Ergebnis zu rechnen ist.

Dadurch, dass Funktionen bzw. Methoden sich nur auf eine Aufgabe beschränken, sind sie besser wiederverwendbar und verhindern in vielen Fällen doppelten Quelltext. Auch das Review solcher fachlich eng abgestimmten Methoden ist einfacher möglich, da die Komplexität verringert ist.

Coding Conventions

Während bis hierhin viele einzelne Elemente beschrieben wurden, sollen diese nun zu einer Coding Convention zusammengeführt werden. Solche Coding Conventions sind relativ umfangreiche Werke. In vielen Fällen ist es nicht nötig das Rad neu zu erfinden, da für viele Sprachen Standard-Konventionen existieren, welche genutzt werden können.

Alternativ sollte sich zumindest an diesen Konventionen orientiert werden. Auch die jeweiligen Entwicklungsumgebungen, setzten über die Code-Formatierung gewisse Teile von Coding Conventions direkt um.

Sprachspezifische Konventionen

Wer sich umschaut, wird feststellen, dass eine Reihe von Coding Conventions für unterschiedliche Sprachen existieren. Dies sind unter anderem die .NET: Microsoft Coding Conventions, für Java die Code Conventions for the Java Programming Language und für PHP: PSR-1 und PSR-2.

Allerdings werden manche dieser Konventionen wie für Java mittlerweile als veraltet angesehen und büßen damit auch an Verbindlichkeit ein. Bei anderen Styles wie PSR-2 werden diese direkt für die Entwicklung des Frameworks genutzt und sind somit verbindlich.

Übergreifende Konventionen

Daneben existieren noch andere Coding Conventions wie die Apple Coding Convention und der Google Style Guide.

Der Google Style Guide deckt Konventionen für unterschiedlichste Sprachen, wie C++, Objective-C, Java, Python, R, HTML, JavaScript und weitere ab und kann online eingesehen werden.

Lizenziert ist der Google Style Guide unter der Creative-Commons-Lizenz CC-BY. Neben der eigentlichen Beschreibung werden auch Dateien mit den entsprechenden Konfigurationen für die Entwicklungsumgebung mitgeliefert.

Dokumentation

Auch wenn ein Hauptaugenmerk bei Coding Conventions auf dem Quelltext liegt, sollte die Dokumentation ebenfalls beachtet werden. So sollte nur das notwendige dokumentiert und tote und inkorrekte Dokumentation gelöscht werden.

Auch hat es sich eingebürgert, eine entsprechende Datei ins Wurzelverzeichnis des Projektes zu legen. Diese trägt meist den Namen README bzw. README.md

In diesem Dokument wird erklärt, um welches Projekt es sich handelt und ein kurzer Überblick über das Projekt gegeben. Daneben werden weiterführende Links bereitgestellt und erklärt, wie das Projekt gebaut werden kann.

# WordPress2Markdown

WordPress2Markdown is a tool that convert WordPress eXtended RSS (WXR) into markdown. Export the WordPress site via
backend and use the WordPress eXtended RSS (WXR) with this tool.

## Usage

WordPress2Markdown is a command line tool.

> java -jar WordPress2Markdown.jar -i wordpress-export.xml -s DATETIME -o /home/seeseekey/MarkdownExport

### Parameter

The options available are:

    [--author -f value] : Filter export by author
    [--authors -a] : Export authors
    [--help -h] : Show help
    [--input -i value] : Input path
    [--output -o value] : Output path
    [--scheme -s /POST_ID|DATETIME/] : Scheme of filenames

## Conversion

WordPress2Markdown converted the following html and other tags:

* \<em\>
* \<b\>
* \<blockquote\>
* \<pre\>
* \<img\>
* \<a\>
* Lists
* WordPress caption blocks ()

All other tags are striped.

## Developing

Project can be compiled with:

> mvn clean compile

Package can be created with:

> mvn clean package

## Authors

* seeseekey - https://seeseekey.net

## License

WordPress2Markdown is licensed under AGPL3.

Eine weitere wichtige Datei ist das Changelog, bzw. die Datei CHANGELOG.md. Diese Datei dokumentiert Änderungen am Projekt und informiert den Leser somit über Änderungen, neue Funktionalität und Ähnliches.

# Changelog

This changelog goes through all the changes that have been made in each release.

## [1.2.0-SNAPSHOT]() - 2022-03-04

### Added

* Implement simple conversion for CSV files

### Changed

* Update project to Java 17
* Rework changelog
* Update dependencies
* Change license from GPL3 to AGPL3

### Fixed

* Fix some SonarLint code smells
* Small optimizations

## [1.1.0](https://github.com/seeseekey/Convert2Markdown/releases/tag/v1.1) - 2019-10-13

### Added

* Implement conversion of MediaWiki dump files
* Add statistical information for export
* Add support for exporting author (#1)
* Add filter to export only a specific author

### Changed

* Rename tool to Convert2Markdown
* Update documentation
* Rebuild HTML to markdown conversion with HTML parser

## [1.0.0](https://github.com/seeseekey/Convert2Markdown/releases/tag/v1.0) - 2019-03-26

* Initial release

Versionierung

Im weiteren Sinne gehört auch die Versionierung des Projektes zu den Coding Conventions. Gerne genutzt wird hierbei die semantische Versionierung. Dabei liegen den Zahlen der Versionnummer z. B. 2.4.7 eine bestimmte Bedeutung zugrunde.

So handelt es sich bei der ersten Zahl um die Major-Version, welche nur dann erhöht wird, wenn zur Vorgängerversion inkompatible Änderungen oder andere signifikanten Änderungen vorgenommen wurden.

Die zweite Zahl ist die sogenannte Minor-Version, welche meist bei neuer Funktionalität hochgezählt wird. Die letzte Zahl bezeichnet die Bugfix-Version und wird bei entsprechenden Fehlerbereinigungen hochgezählt.

Daneben existieren auch andere Versionierungen, wie das relativ beliebte Schema Jahr.Monat z. B. 2023.04 als Versionnummer, welche bei neuen Releases basierend auf der Version gerne um eine dritte Nummer erweitert werden z. B. 2023.04.1.

Umsetzung

Neben der eigentlichen Definition einer Coding Conventions ist es wichtig, dass diese im Entwicklungsalltag berücksichtigt und genutzt wird. Hier stellt sich dann die Frage nach der organisatorischen Umsetzung.

Grundlegend sind es einige Schritte auf dem Weg bis zu Nutzung und Umsetzung. So sollte sich im ersten Schritt auf eine Coding Convention geeinigt werden. Nachdem dies geschehen ist, mitsamt aller diesbezüglicher Regeln, wie zur Benennung oder der gewünschten Komplexität, müssen diese Coding Conventions entsprechend kommuniziert werden.

So ist es problemlos möglich, entsprechende Templates für die Einstellungen der jeweiligen IDEs zur Verfügung zu stellen. Auch sollte die Überprüfung der Coding Conventions beim Review kontrolliert werden.

Daneben können die entsprechenden Coding Conventions auch per Software überprüft und z. B. das Pushen in ein entferntes Git-Repository nur erlaubt werden, wenn die Coding Conventions eingehalten wurden. Allerdings sollte auch nicht versucht werden, soziale Probleme, welche sich bei der Einführung der Konventionen ergeben, durch rein technische Ansätze zu lösen.

Umstellung

Eine weitere Frage ist die Umstellung der bestehenden Projekte auf neue Coding Conventions. Bestimmte Dinge wie die Formatierung des Quelltextes können meist automatisch auch für größere Projekte bewerkstelligt werden.

Daneben sollte bestehender Code Stück für Stück auf die Konventionen angepasst werden, z. B. bezüglich der Benamung. Dies kann immer dann geschehen, wenn an einer entsprechenden Stelle im Rahmen einer Anforderung gearbeitet wird.

Probleme

Natürlich kann es bei der Nutzung und Einführung von Coding Conventions Probleme geben. Dies kann sich in Widerstand aus der Entwicklerschaft oder in Problemen mit der technischen Seite wie unterschiedlicher IDEs ausdrücken.

Vor allem bei einer Neueinführung kann es schwierig sein, sich an entsprechende Konventionen und Regeln zu gewöhnen, wenn vorher ohne gearbeitet wurde. Das Gleiche gilt, wenn eine Konvention nicht den eigenen Präferenzen entspricht.

Es kann passieren, dass einige Zeit dafür aufgebracht werden muss, die Konventionen zu verinnerlichen und umzusetzen. Deshalb ist es wichtig, die Konventionen klar zu kommunizieren, ihre Nutzung verpflichtend zu machen und dies im Entwicklungsprozess wie beim Review auch zu beachten.

Fazit

Coding Conventions sind ein wesentlicher Bestandteil der Softwareentwicklung und bieten viele Vorteile. Sie helfen dabei, Quelltexte einfacher lesbar, verständlich und wiederverwendbar zu machen. Dadurch wird die Wartbarkeit verbessert und die Qualität der Software erhöht. Dies kann zu einer höheren Produktivität und einem schnelleren Entwicklungsprozess führen.

Dieser Artikel erschien ursprünglich auf Golem.de und ist hier in einer alternativen Variante zu finden.

Minecraft auf dem Steam Deck installieren

Da Minecraft nicht über Steam installiert werden kann, läuft es im ersten Moment nicht auf dem Steam Deck. Allerdings kann hier schnell Abhilfe geschaffen werden. Im ersten Schritt muss hierzu in den Desktop-Modus gewechselt werden. Dieser wird erreicht in dem im Steam Deck-Menü der Punkt Ein/Aus ausgewählt wird. Dort findet sich dann der Punkt Zum Desktop wechseln.

Die Installation des GDLauncher

Im Desktop-Modus angekommen, sollte die Softwareverwaltung (Discover) gestartet werden und dort nach der Applikation GDLauncher gesucht werden. Wird im Desktop-Modus eine Tastatur benötigt, so kann diese über einen Druck auf die Steam-Taste in Verbindung mit dem X-Button aktiviert werden. Anschließend sollte die Applikation installiert werden.

Nach einigen Minuten ist der Launcher installiert und kann gestartet werden. Im ersten Schritt möchte der Launcher Java installieren. Hier empfiehlt es sich Automatic Setup auszuwählen. Anschließend werden die benötigten Java-Versionen heruntergeladen und installiert. Danach kann sich über den GDLauncher in den Account eingeloggt werden. Bei bereits umgestellten Konten sollte hier auf Sign in with Microsoft geklickt werden. Nachdem Nutzername und Passwort eingegeben wurde und die App autorisiert wurde, kann über den GDLauncher die passende Minecraft-Version installiert werden.

Dazu müssen einige einführende Worte weggeklickt und anschließend über den Plus-Button eine neue Minecraft-Version installiert werden. Der Download der entsprechenden Version sollte nach einigen Minuten abgeschlossen sein. Nach der Installation sollte das Menü im Desktop-Modus wieder aufgerufen werden und dort nach GDLauncher gesucht werden. Nach einem rechten Mausklick auf das Symbol kann dort Add to Steam ausgewählt werden. Mit der Verknüpfung Return to Gaming Modus, welche sich direkt auf dem Desktop befindet, kann wieder in den normalen Standardmodus des Steam Deck zurückgekehrt werden.

Die Controllereinstellungen müssen für Minecraft sinnvoll definiert werden

Nachdem GDLauncher, als Icon hinterlegt wurde, muss im nächsten Schritt eine sinnvolle Controllereinstellung definiert werden. In meinem Fall habe ich das Community-Layout Minecraft Xbox Style von Rasin Bar genutzt. Anschließend kann der GDLauncher gestartet werden und dort dann die gewünschte Minecraft-Version ausgewählt und gestartet werden. In Minecraft selbst können entsprechende Einstellungen wie die gewünschte Auflösung vorgenommen werden.

Minecraft auf dem Steam Deck

Direkt auf dem Steam Deck sollte diese immer 1280 x 800 Pixel betragen und kann somit direkt über die Einstellungen des GDLauncher vorgenommen werden. Dies ist auch die sinnvollere Variante um Letterbox-Effekte zu verhindern. Da Minecraft von sich aus keine sinnvolle Gamepad-Unterstützung mitbringt; ist die Nutzung über die Dockingstation und ein separates Gamepad ohne entsprechende Mods nicht sinnvoll. Der Chat hingegen kann in der Theorie über die Bildschirmtastatur genutzt werden.