Framework 7

Bei der Suche nach brauchbaren und kleineren Frameworks für die Entwicklung von Web-Anwendungen bin ich unter anderem über OpenUI gestolpert. Allerdings war das Framework für meine Zwecke etwas zu groß, weshalb ich mich schlussendlich für Framework 7 entschieden habe. Mithilfe des Frameworks ist es möglich Web-Anwendungen zu schreiben, welche unter iOS, Android und auf dem Desktop laufen. Neben der Ausführung im Browser ist es daneben möglich Apps für die mobilen Systeme zu bauen. Framework 7 liefert Themes für iOS und Android mit, so das sich die Elemente an das Betriebssystem anpassen.

Eine Beispiel-App, welche mit Framework 7 erstellt wurde

Die offizielle Seite des Projektes ist unter framework7.io zu finden. Der Quelltext des Framework 7 ist auf GitHub zu finden. Der Quelltext des Frameworks ist unter der MIT-Lizenz lizenziert und damit freie Software.

OpenUI

Frameworks zum Bau von Web-Apps gibt es eine Menge. Neben den bekannteren wie z.B. React und Vue existieren auch einige unbekanntere Frameworks. Eines dieser Frameworks ist OpenUI. OpenUI ist die freie Variante von SAPUI, einer von SAP entwickelten Bibliothek für Web-Apps. OpenUI bietet eine große Anzahl an Komponenten, welche zum Bau von Applikationen genutzt werden können.

Ein Beispiel-App welche mittels OpenUI realisiert wurde

Neben der Unterstützung für MVC, bietet OpenUI eine Reihe von Funktionalitäten wie Lokalisation, Theming, Data Bindings, so das selten andere 3rd-Party Bibliotheken benutzt werden müssen. Integriert in OpenUI ist daneben eine jQuery-Version, so das DOM-Manipulationen mit dieser vorgenommen werden können. Problematisch an OpenUI ist, das es neben der ausgezeichneten Dokumentation, relativ wenige Tutorials und Hilfestellungen im Netz zu finden sind. Die offizielle Seite des Projektes kann unter openui5.org besucht werden. Der Quelltext von OpenUI ist auf GitHub zu finden. Er ist unter der Apache License in Version 2 lizenziert und damit freie Software.

Slim Framework

Für wahrscheinlich jede Programmiersprache existieren mehr oder weniger viele Frameworks, welche dem Entwickler bestimmte Aufgaben abnehmen und somit die Entwicklung beschleunigen. Neben den größeren Framework existieren auch eine Reihe von Frameworks mit einem minimalistischeren Ansatz. Eines dieses sogenannten Microframeworks ist Slim. Entwickelt wird und wurde Slim für PHP.

slimframework.com

Slim eignet sich sehr gut für die Umsetzung für REST-APIs bzw. RESTful Webservices. Um ein Projekt zu erstellen, kann der Paket- bzw. Dependency-Manager Composer genutzt werden:

composer create-project slim/slim-skeleton exampleapp

Damit wird ein Grundprojekt angelegt mit welchem gearbeitet werden kann. Auch von seitens des Swagger-Toolings wird Slim unterstützt. So kann eine API über den Swagger-Editor definiert werden und anschließend für das Slim-Framework exportiert werden. Der Quelltext des Frameworks ist auf GitHub zu finden. Es ist unter MIT-Lizenz lizenziert und damit freie Software. Die offizielle Seite des Projektes ist unter slimframework.com zu finden.

Code Snippets über Postman generieren

Mit der App Postman ist es möglich REST-API Aufrufe gegen beliebige Endpunkte durchzuführen. Allerdings bietet Postman weitere Funktionalität, welche vom normalen Tagesgeschäft der App abweicht. Eine dieser Funktionalitäten ist der Code Snippet Generator.

Code Snippets können für unterschiedliche Sprachen und Frameworks erzeugt werden

Mit diesem Generator kann ein beliebiger Request in Quellcode umgewandelt werden. Der Generator unterstützt unterschiedliche Programmiersprachen und Frameworks. Für Java würde, unter Nutzung der OK HTTP Bibliothek, das Ganze so aussehen:

OkHttpClient client = new OkHttpClient();

MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "{\r\n\tfield: \"data\",\r\n\tfield2: \"data\",\r\n\tfield3: \"data\"\r\n}");
Request request = new Request.Builder()
  .url("https://example.com")
  .post(body)
  .addHeader("HeaderField", "headerValue")
  .addHeader("Content-Type", "text/plain")
  .addHeader("User-Agent", "PostmanRuntime/7.11.0")
  .addHeader("Accept", "*/*")
  .addHeader("Cache-Control", "no-cache")
  .addHeader("Postman-Token", "7dda208f-ba63-467d-99cd-98455c2b3a7a,9125dbf4-cd5c-4070-87e3-fcda7416ca08")
  .addHeader("Host", "example.com")
  .addHeader("accept-encoding", "gzip, deflate")
  .addHeader("content-length", "56")
  .addHeader("Connection", "keep-alive")
  .addHeader("cache-control", "no-cache")
  .build();

Response response = client.newCall(request).execute();

Erreichbar ist das Feature über den Code-Link, welcher unter dem Send-Button des Hauptfensters zu finden ist. Nach einem Klick auf den Link erscheint ein Dialog in welchem die gewünschte Sprach- und Frameworkkombination ausgewählt werden kann.

Unter dem Send-Button ist der Code-Link zu finden

Als Sprachen für die Generierung von Code Snippets werden unter anderem C#, Go, Java, JavaScript, Objective-C, PHP, Python und Swift unterstützt. Daneben werden bestimmte Tools wie curl und wget unterstützt. Postman selber kann unter getpostman.com bezogen werden.

Benchmarking mit dem JMH-Framework

Benchmarking unter Java hat mit einigen Problemen zu kämpfen. So optimiert die Java-Laufzeitumgebung den Quellcode, je nachdem wie oft er benutzt wird. Wenn nun kleinere Dinge getestet werden sollen, wie z.B. ob Methode A oder B besser funktioniert so wird dies problematisch. Am Anfang würde besagte Methoden nur interpretiert werden, anschließend würden sie bei häufiger Benutzung kompiliert werden und bei noch häufigerer Benutzung weiter optimiert werden. Daneben kann es passieren dass der Benchmark komplett wegoptimiert wird, da die JVM unter Umständen erkennt, dass die genutzten Werte bzw. die Ergebnisse des Benchmarks später nicht mehr genutzt werden.

Die offizielle Seite des Java Microbenchmark Harness-Framework

Damit sich ein Entwickler nicht immer und immer wieder mit solchen Problemen beim Benchmarking herumschlagen muss, wird seit einigen Jahren im Rahmen des OpenJDK-Projektes an dem Java Microbenchmark Harness-Framework gearbeitet. Das JMH-Framework nimmt dem Entwickler viele Aufgaben ab, um diese Probleme zu lösen. So kann bzw. wird die JVM durch JMH aufgewärmt werden und auch die Messung der Zeiten übernimmt JMH. Um JMH zu nutzen, müssen die entsprechenden Abhängigkeiten (in diesem Fall über die Maven-POM-Datei) dem Projekt hinzugefügt werden:

<dependency>
	<groupId>org.openjdk.jmh</groupId>
	<artifactId>jmh-core</artifactId>
	<version>1.21</version>
</dependency>
<dependency>
	<groupId>org.openjdk.jmh</groupId>
	<artifactId>jmh-generator-annprocess</artifactId>
	<version>1.21</version>
</dependency>

Sind die Abhängigkeiten eingebunden, kann mit dem eigentlichen Aufbau des Benchmarks begonnen werden. Jede Methode, welche ein Benchmark durchführen möchte, muss mit der @Benchmark-Annotation gekennzeichnet werden:

@Benchmark
public int addInts() {
    return aInt + bInt;
}

Die Klasse, in welcher die Benchmarks definiert sind, muss mit einigen weiteren Annotationen ausgestattet werden:

@State(Scope.Benchmark)
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
public class AddingBenchmark {
...

Die @State(Scope.Benchmark)-Annotation in diesem Beispiel sorgt dafür das die Felder im Rahmen des Benchmarks für die Benchmark-Methoden zur Verfügung stehen. Mit der @BenchmarkMode-Annotation wird definiert, welche Art von Messung vorgenommen werden soll. In diesem Fall wird die durchschnittliche Zeit für eine einzelne Operation gemessen und ausgegeben. Über die @OutputTimeUnit-Annotation wird definiert wie die Zeiten für die Messungen ausgegeben werden. Werden für den Benchmark Daten benötigt so können sie über eine Methode, welche mit der @SetupAnnotation versehen wird, erzeugt werden:

@Setup
public void setup() {
    ...
}

Die setup-Methode wird damit vor dem eigentlichen Benchmark ausgeführt und somit können benötigte Daten dort erzeugt werden. Damit der Benchmark nun ausgeführt werden kann muss das Java Microbenchmark Harness-Framework angestartet werden. Dafür wird eine Klasse geschrieben und mit einer main-Methode versehen:

package net.seeseekey.JavaBenchmark;

import org.openjdk.jmh.runner.RunnerException;

import java.io.IOException;

public class Runner {

    public static void main(String[] args) throws IOException, RunnerException {
        
        org.openjdk.jmh.Main.main(args);
    }
}

Über die main-Methode wird die main-Methode des Frameworks gestartet und damit wird das Benchmark durchgeführt. Alternativ kann die Methode org.openjdk.jmh.Main.main auch direkt in der Maven-POM-Datei als Startklasse definiert werden:

<plugin>
    <artifactId>maven-assembly-plugin</artifactId>
    <version>3.1.0</version>
    <configuration>
        <archive>
            <manifest>
                <mainClass>org.openjdk.jmh.Main.main</mainClass>
            </manifest>

Nachdem der Benchmark implementiert ist, kann dieser natürlich über die IDE ausgeführt werden. Das würde allerdings nicht ganz der Intention von JMH entsprechen. Stattdessen sollte eine JAR aus dem Projekt erzeugt werden und diese, auf einem möglichst unbelastetem System, über die Konsole ausgeführt werden:

java -jar benchmark.jar

Damit wird der Benchmark über JMH ausgeführt. JMH beginnt mit einer Warmup-Phase und führt anschließend den eigentlichen Benchmark durch. Nach einigen Minuten erhält der Entwickler die Auswertung des Benchmark:

Benchmark                                 Mode  Cnt   Score    Error  Units
JavaBenchmark.AddingBenchmark.addDoubles  avgt   25  ≈ 10⁻⁵           ms/op
JavaBenchmark.AddingBenchmark.addInts     avgt   25  ≈ 10⁻⁵           ms/op

In diesem Fall sieht der Entwickler bei der Ausgabe, dass die Ausgabeeinheit für die Zeit mit Millisekunden zu grob gewählt wurde und stattdessen besser Nanosekunden genutzt werden sollten.