seeseekey.net - Invictus Deus Ex Machina

Wenn man einen ESP8266 programmiert, so wird man dessen GPIOs nutzen um externe Dinge wie Sensoren oder ähnliches anzusteuern bzw. auszulesen. Versucht man das gleiche mit einem NodeMCU-Board wird man feststellen das die Pinbelegung des Boards nicht mit der vom ESP8266 übereinstimmt.

Das NodeMCU-Board in Version 3

Wenn man die Pinbelegung des NodeMCU-Boards mit der vom ESP8266 in Reinform vergleicht, ergibt sich folgendes Bild:

NodeMCU D0 zu ESP8266 16
NodeMCU D1 zu ESP8266 5
NodeMCU D2 zu ESP8266 4
NodeMCU D3 zu ESP8266 0
NodeMCU D4 zu ESP8266 2
NodeMCU D5 zu ESP8266 14
NodeMCU D6 zu ESP8266 12
NodeMCU D7 zu ESP8266 13
NodeMCU D8 zu ESP8266 15
NodeMCU D9 zu ESP8266 3
NodeMCU D10 zu ESP8266 1

Bei der Entwicklung über die Arduino IDE braucht man allerdings keine Sorgen machen. Wird hier das NodeMCU-Board genutzt, so findet man definierte Konstanten von D0 bis D10 um die NodeMCU-GPIOs direkt anzusprechen. Einige der Pins haben auf dem Board eine besondere Funktion:

D1 (I2C Bus / SCL (Clock-Signal))
D2 (I2C Bus / SDA (Datenleitung))
D4 (wie LED_BUILTIN, aber invertierte Logik)
D5 (SPI Bus SCK (Clock-Signal))
D6 (PI Bus MISO)
D7 (SPI Bus MOSI)
D8 (SPI Bus SS (CS))
D9 (Serielle Konsole RX)
D10 (Serielle Konsole TX)

Inspiriert vom Golem.de Temperatur im Büro-Projekt habe ich einen NodeMCU genutzt um die Temperatur zu messen. Auf der Teileliste stehen dabei folgende Bauteile:

  • NodeMCUv3-Board
  • Temperatursensor DS18B20
  • Widerstand (4,7 kOhm)
  • Verbindungskabel (6x)

Diese Teile müssen nun wie folgt auf dem Board angebracht werden:

Die fertige Schaltung

Anschließend kann das NodeMCU-Board mit dem passenden Programmcode bestückt werden:

#include <OneWire.h>
#include <DallasTemperature.h>

OneWire oneWire(D2);
DallasTemperature sensors(&oneWire);
DeviceAddress thermometer;

void setup(void) {
  Serial.begin(115200);

  sensors.begin();
  sensors.getAddress(thermometer, 0); 
  sensors.setResolution(thermometer, 12);
}

void loop() {

  Serial.println("Read temperature...\n");
  sensors.requestTemperatures(); 
  
  float temperature = sensors.getTempC(thermometer); 
  Serial.println(temperature);

  delay(5000);
}

In dem Programm wird zuerst eine One-Wire-Verbindung definiert und in der setup-Methode die Verbindung konfiguriert. Anschließend wird in der loop-Methode alle fünf Sekunden die Temperatur ausgelesen und in die serielle Konsole geschrieben.

Das NodeMCU-Board ist ein Entwicklungsboard für den ESP8266 in der ESP-12er Variante. Durch seinen günstigen Preis kann es direkt in Projekte eingebaut werden. Wenn man ein solches Projekt in der Elektronik-Software Fritzing dokumentieren möchte, benötigt man das entsprechende Bauteil in Fritzing. Es existieren zwar einige der ESP8266-Varianten, aber das NodeMCU-Board fehlt in der Standardausstattung.

Das NodeMCU Bauteil wurde Fritzing hinzugefügt.

Allerdings ist es kein Problem neue Bauteile zu Fritzing hinzuzufügen. Für das NodeMCU-Board gibt es Vorlagen für die Version 1 und die Version 3 des Boards. Wichtig ist hierbei die fzpz-Datei. Nachdem diese heruntergeladen wurde, kann sie in Fritzing per Drag & Drop installiert werden. Anschließend ist das neue Bauteil installiert und kann genutzt werden. Wenn man Fritzing beendet, wird nachgefragt ob das neue importierte Bauteil dauerhaft behalten werden soll. Hier sollte mit Ja geantwortet werden.

Das auf dem ESP8266 basierendem Entwicklungsboard NodeMCU gibt es unterschiedlichen Varianten, die sich unter anderem durch die Größe des Flashspeichers unterscheiden. Möchte man nun ermitteln welche Größe der Speicher beim eigenen NodeMCU-Board hat kann man dies mit einem Programm aus einem der ESP8266-Repositories sehr unkompliziert ermittelt.

Die Größe des Flashspeichers wird über die serielle Schnittstelle ausgegeben

Nachdem die Arduino IDE mit dem Programm geöffnet wurde und das Programm auf das NodeMCU-Board geflasht wurde, kann die Ausgabe über die serielle Schnittstelle ausgelesen werden. Dazu muss der serielle Monitor, im Menü unter Werkzeuge -> Serieller Monitor zu finden, aktiviert werden. Wichtig ist es, dass hier die korrekte Baudrate eingestellt wird.

Der ESP8266 ist ein Mikrocontroller welcher vor allem aufgrund seines Preises und seiner Fähigkeiten sehr beliebt in der Bastlerszene ist. Während er ursprünglich als WLAN-Shield für den Arduino und Konsorten gedacht war, wird er immer öfter direkt genutzt. Das sollte auch nicht verwundern, schließlich sind viele Leistungswerte des ESP8266 einem gewöhnlichen Arduino überlegen. Mittlerweile gibt es vom ESP8266 14 Varianten die von ESP-1 bis ESP-14 durchnummeriert sind.

Das NodeMCU-Board

Der einfache Einstieg gelingt mit gelingt am besten mit einem ESP8266-Entwicklerboard. Diese verfügen meist über NodeMCU. Das NodeMCU-Modul basiert dabei auf einem ESP-12. Da der ESP8266 3,3 Volt benötigt, USB allerdings 5 Volt liefert, löst das Entwicklerboard viele Probleme, da es bereits einen Spannungsteiler an Bord hat. Für die Anbindung per seriellem Interface wird unter macOS ein Treiber benötigt. Dieser kann unter anderem auf GitHub gefunden werden. Nach der Installation des Treibers muss der Entwicklungsrechner neu gestartet werden.

Nach der Treiberinstallation kann die Schnittstelle angesprochen werden

Nach dem Neustart kann die Arduino IDE geöffnet werden. Da das Board nicht von Haus aus unterstützt wird, muss eine weitere Konfiguration für den Board Manager hinzugefügt werden. Dazu öffnet man die Einstellungen der Arduino IDE und wählt dort den Punkt Zusätzliche Boardverwalter-URLs aus. Dort fügt man nun die URL:

http://arduino.esp8266.com/stable/package_esp8266com_index.json

hinzu. Anschließend können die Einstellungen geschlossen werden und der Board Manager geöffnet werden. Im Board Manager wird nun nach ESP8266 gesucht und die entsprechende Unterstützung installiert.

Die Unterstützung für die ESP8266-Boards wird installiert

Nachdem die Unterstützung für das Board installiert wurde, muss das ganze noch korrekt konfiguriert werden. In diesem Beispiel wurden folgende Einstellungen genutzt:

Board: "NodeMCU 1.0 (ESP-12E Module)"
CPU Frequency: "80 MHz"
Flash Size: "4M (3M SPIFFS)"
Upload Speed: "9600"
Port: "/dev/cu.wchusbserial1410"

Als Beispiel-Programm bietet sich das Webserver-Beispiel an. Nachdem das Beispielprogramm in der Arduino IDE gelandet ist, kompiliert und hochgeladen wurde kann der erste Test des ESP8266 durchgeführt werden. Dazu muss im Browser die IP-Adresse des Gerätes oder alternativ die URL: http://esp8266.local aufgerufen werden.